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Abstract. Dirichlet process mixture (DPM) models provide exible modeling of
the distributions of data as an in�nite mixture of distributions from a speci�ed
collection. However, specifying priors for these models in individual data contexts
can be challenging. In this paper, we introduce a scheme which requires the inves-
tigator to specify only simple scaling information. This is used to transform the
data to a �xed scale on which a low information prior is constructed. After draw-
ing samples from the posterior with the rescaled data, we transform the inference
back to the original scale. The low information prior is selected to provide a wide
variety of components for the DPM in order to generate exible distributions for
the data on the �xed scale. This scale-data-and-rescale-inference method can be
applied to all DPM models with kernel functions closed under a suitable scal-
ing transformation. Construction of the low information prior, however, is kernel
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Theorem 1. Let p � 1, (�i;Ti) � G, G � DP (�;G0). Take (�0;T0) � G0. Then
E(�
ki ) = E(�
k0 ) for k = 1; 2 and E(Tk

i ) = E(Tk
0) for k = �1, where v
1 = v and

v
2 = vv0 for v 2 Rp.

Given its parameters �i, the distribution of a data point zi is normal with mean �i,
precision
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Having speci�ed v, we have three equations and two constraints for the hyperparam-
eters, requiring kT > 2 and a� > 1. It is unclear how to choose kT ; k , and a� exactly;
however, smaller values give less informative priors for the corresponding Gamma and
Wishart distributed parameters. A choice of a� = 3=2 implies � has a scaled �2 distribu-
tion with 3 degrees of freedom, the minimal integer degrees that give a� > 1: Similarly,
in the case p = 1;Wi(k;W ) is a scaled �2 distribution with k degrees of freedom. Then
3 is the minimal integer degrees of freedom that will satisfy the constraint kT > 2, so
we set kT = 3 and k = 1. With v; a�; kT ; and k chosen above, equations (1)-(3) give
values for m�; b�
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Similar to the univariate case, we set a� = 3=2 and kT = p + 2 and k = p, the
minimal integer degrees of freedom that satisfy kT > p + 1 as required. Then we can
obtain m�; b�; and W from equations (3)-(5). Using the fact that �2

1;� = z2
1�(1��)=2

for any �, it is easy to see that the choice of hyperparameters for the vector data case
reduces to the scalar case when p = 1.
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Figure 1: A Hundred Gaussian DPM Mixture Components from LIO Prior

Figure 2: Twenty Prior Predictive Densities from Gaussian DPM with LIO Prior

graph, speci�cally the ranges [�7;�4], [�0:5; 0:5], and [5; 10]. This demonstrates that
the Gaussian DPM with our LIO prior can adequately estimate a Cauchy distribution
and, furthermore, is sensitive enough to discriminate between Cauchy/t1 and t2 distri-
butions. In this simulated example, we used the known median and 95th percentile of
the distribution. Sensitivity to such choices is considered in Section 5.
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Figure 3: Density estimation of Cauchy distribution

The next example uses data from air quality measurements in New York, from May to
September 1973, contained in the R dataset \airquality". We estimate the bivariate dis-
tribution of ozone and solar radiation levels from 111 pairs of measurements in this set.
Figure 4 has a scatter plot of the data and the density estimate. The estimate appears
to �t the data quite well. Because the ozone and radiation levels only take on positive
values, however, some density is placed outside the possible range of values. Using a
log transformation of the levels before �tting might give even better estimation while
ensuring that all density is placed within the possible range of values. In the absence of
external information, for illustrative purposes, we used needed scaling percentiles from
the data.

Example 3 illustrates density estimation using 400 data vectors from a bivariate mix-
ture distribution, F = 0:5F1 + 0:5F2. Here F1 is the bivariate t distribution with 5
degrees of freedom and an identity covariance matrix, while F2 is a bivariate normal

with mean

�
2
0

�
and covariance matrix

�
1=3 1=3
1=3 4=3

�
. Figure 5 shows four plots: a scatter
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Figure 5: Plots from t5 / normal mixture

(2006), we �t this model:

zij�i; �i
ind:�Weib(yij�i; �i); i = 1; :::; n

(�i; �i)jG
ind:�G; i = 1; :::; n

G � DP (G0; �)

G0 = Ga(�j�0; �0)Ga(�j��; ��)I(f(�);1)(�)

�0 � Ga(�00; �00)

� � Ga(a; b):
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various combinations of (��; ��) resulted in the right panel of Figure 7 with �� = 0:2
and �� = 0:1. This completes the hyperparameter selection we recommend for the LIO
prior.

λ Generated by Varying Percentiles

−250 −200 −150 −100 −50 0

Figure 6: Histogram of the log(�)

Figure 7: log(�) and �





Y. Shi, M. Martens, A. Banerjee and P. Laud 15

Figure 9: Survival Function, Density Function and Hazard Function Estimates of
Gamma(0.5,2)
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Figure 10: Survival Function, Density Function and Hazard Function Estimates of Unif-
Exponential Distribution
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Figure 11: Survival Function, Density Function and Hazard Function Estimates of Unif
Pareto(2,2)

vations, 95% right censored at 0:5, generated from the same mixture of log-normals as in
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5.1 Sensitivity Analysis
To evaluate sensitivity of the Gaussian DPM model to scale estimation, we use the
75%, 90%, 95%, 99%, and 99.9% percentiles of the data’s underlying distribution as
speci�cations of the upper percentile from the researcher; the median of the distribution
is used as the speci�ed median estimate. We consider three underlying distributions:

1. t2 : the standard t distribution with 2 degrees of freedom, representing a distribu-
tion with tails heavier than those of the Gaussian;

2. lnorm : the lognormal distribution, exp[Normal(2; 1)], representing a skewed dis-
tribution;

3. mixnorm : a mixture of two Gaussians, 0:5 Normal(0;
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the examples of the previous section. For each distribution, we generated 200 datasets
of 100 observations. Right censoring rate was set at 10% while interval censoring of
10% of the observations was accomplished for each dataset by ascribing obervations
to �xed intervals. As in the previous plot, Figure 15 uses colors to represent scaling
speci�cations, with black representing frequentist NPMLE results from the R package
\survival". Again, each symbol represents a particular data generating distribution,
with bias and rmse at the 9 deciles marked on the horizontal axes. The �gure clearly
indicates that 50th and 75th percentiles give poor results across all deciles. It appears
safer to overestimate the 95th percentile than underestimate it for the LIO prior in the
Weibull DPM.
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Figure 15: Sensitivity Analysis of Weibull DPM

5.2 Comparison with Empirical Methods

Using the median and the 95th percentile of the data generating distribution as input to
the LIO prior, we compared the performance of the Gaussian DPM and the ECDF for
the three speci�ed distributions. Here, we used 200 simulated datasets of 100 or 1000
observations each. Figure 16 shows the results at the deciles of the data’s underlying
distribution. We use \100D" and \100E" to denote respective results from the Gaussian
DPM and ECDF on datasets of size 100; similarly, \1000D" and \1000E" show these
for sets of size 1000. Unlike the previous �gure, colors here represent data generating
distributions. The DPM with the LIO prior and the ECDF perform very similarly with
respect to bias and rmse.

For the mixture-of-Weibulls model, we used the 95th percentile of the data generating
distribution and compared results with an empirical method, again using the same 4
data generating distributions as in the examples of the previous section. To see the
impact of censoring rate and sample size, we added scenarios with 50% censoring (25%
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Figure 16: Gaussian DPM Comparison with Empirical CDF

right censoring, 25% interval censoring) and 1000 observations. In Figure 17, the \S" on
the x-axis represents the NPMLE estimates from the R package \survival", while the
\D" represents DPM of Weibulls model with LIO prior. The numerals preceeding these
letters indicate the censoring rate 20 or 50 percent. In each plot, the �rst 4 estimates
are based on datasets with 100 observations while the rest are based on datasets with
1000 observations. Again, we see that the performance of the DPM is quite similar to
the frequentist estimates in terms of bias and rmse.

Figure 17: Comparison with Estimates from Survival package
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6 Convergence Considerations
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To delve into posterior consistency properties of the LIO prior, we �rst show that it
su�ces to study consistency on the rescaled data.

Lemma 1. Let Zi = AXi + b, for each i 2 1; : : : ; n be a linear rescaling of the data
fXigni=1 for some positive matrix A in Rp�p and any vector b in Rp. Then, a prior �

achieves weak (strong) consistency at a density f0 on fXigni=1 if the induced prior e�
achieved weak(strong) posterior consistency at the induced density ef0 on fZigni=1.

Proof. We begin with the proof for weak posterior consistency. Note that,

ef0(z) =
f0(Ax+ b)

jAj
;

where jAj > 0 since A is positive de�nite. For any � > 0, consider the Nw
� (f0) neighbor-

hood. Then using the Portmanteau lemma,

Nw
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=

R ef2Nw� ( ef0)

Qn
i=1

ef(Zi)de�( ef)R ef2F Qn
i=1

ef(Zi)de�( ef)

= eZn(�) ( say ):

Since P1ef0
(fZig 2 S) = 1 =) P1f0

(fXig 2 AS + b) = 1 and since eZn(�) ! 1 a.s. by

the conditions of the lemma, we have that, Xn(�) ! 1 a.s., which completes the proof
for equivalence of weak consistency. The proof of equivalence of strong consistency is
similar with change in the type of neighborhood and is omitted.

Next we consider the class of densities at which consistency is shown. In the next
lemma, we show that in addition to equivalence for posterior consistency, the regularity
conditions and the density classes are also equivalent between the observed data and
the rescaled data.

Lemma 2. Let fZigni=1 be a linear rescaling of the observed data fXigni=1 as previously
stated, with induced densities and priors between them. The following conditions for the
induced density on rescaled data,

1. ef0(z) is nowhere 0 and is bounded above by M , 8z 2 Rp

2. j
R ef0(z) log ef0(z)dzj <1

3. For some � > 0, j
R ef0(z) log

ef0(z)
��(z)dzj <1, where ��(z) = infkt�zk<� ef0(t)

4. For some � > 0,
R
kzk2(1+�) ef0(z)dz <1,

imply equivalent conditions on the density f0(x) on the observed data.

Proof. We only show the proof for item (4). Others are similar and omitted.Z
kxk2(1+�)f0(x)dx =

Z
kjAj�1(z � b)k2(1+�)f0(jAj�1(z � b))dz

=

Z
kjAj�1(z � b)k2(1+�) ef0(z)dz

� (jAj�1)2(1+�)

Z
kzk2(1+�) ef0(z)dz + (jAj�1 + kbk)2(1+�)

<1:

Earlier work in the literature (Walker, 2004; Choi and Schervish, 2007) contain other
slightly di�erent regularity conditions on the true density f0, for all of which, equivalence
can be shown - we avoid a detailed description here for the sake of brevity. In the rest of
this exposition we consider results on the rescaled data only, based on the equivalence
results derived.
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6.3 Consistency results on the rescaled data
The LIO prior in this article is used for the following three scenarios:

1. Mixture of univariate normals for scalar responses

2. Mixture of Weibulls for scalar responses

3. Mixture of multivariate normals for vector responses

Items (1)&(2) have been dealt with in Ghosal et al. (1999) and Wu and Ghosal
(2008). However the work in Wu and Ghosal (2008) is restricted to showing consistency
at true densities having a �nite second moment, which excludes some commonly used
densities, such as the Cauchy density. Tokdar (2006
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The proof of weak consistency for the multivariate case - for our item (3) follows from
the results in theorem 2 in Wu and Ghosal (2010). Note that these results also do not
permit densities for which second moment is not �nite. It is possible to further impose
conditions on the base measure, implying conditions on the eigenvalues of covariance
matrix, but this treatment is fairly involved and does not follow directly from earlier
results - a discussion of this will be omitted here.

Strong consistency (also referred to as L1 consistency) on a restricted class of densities
as given by theorem 3 in Wu and Ghosal (2010) applied directly to our rescaled data
procedure, and by virtue of our equivalence results, to the induced procedure on the
observed data. Some weaking of the conditions of theorem 3 is possible for admitting
a broader class of true densities, once again by imposing strict decay conditions on the
tails of the base measure, but further involved details omitted here.

7 Discussion
We o�er a technique and low information prior speci�cation that can handle data of
various scales and demonstrated its value with the mixture of Gaussians model and the
mixture of Weibulls model using data simulated from a variety of distributions. To im-
plement the Gaussian DPM model with our prior, we have developed a wrapper for the
DPdensity function of the R package DPpackage (?) that provides density estimation
for scalar and vector-valued random samples.

We illustrated this method of prior speci�cation for DPMs of Gaussian and Weibull
distributions. However, a similar approach can be used to obtain a low information
prior of mixtures of distributions from any location-scale family, such as t distributions.
Additionally, a similar application could be used for mixtures of distributions from a
family that, like the Weibulls, are closed under a change of scale; Gamma distributions
are one such family.

The process of obtaining a low information prior for scaled data only needs to be done
once and is selected to be vague but computationally reliable. While the LIO prior
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with these models.



26 LIO Priors for Dirichlet Process Mixture Models

References
Chen, X. (2007). \A new generalization of Chebyshev inequality for random vectors."

arXiv preprint arXiv:0707.0805 .

Choi, T. and Schervish, M. J. (2007). \On posterior consistency in nonparametric
regression problems." Journal of Multivariate Analysis, 98(10): 1969{1987.

De Iorio, M., M�uller, P., Rosner, G. L., and MacEachern, S. N. (2004). \An ANOVA
model for dependent random measures." Journal of the American Statistical Associ-
ation, 99(465): 205{215.

Escobar, M. D. and West, M. (1995). \Bayesian density estimation and inference using
mixtures."



Y. Shi, M. Martens, A. Banerjee and P. Laud 27

Wu, Y. and Ghosal, S. (2008). \Kullback Leibler property of kernel mixture priors in
Bayesian density estimation." Electronic Journal of Statistics, 2: 298{331.

| (2010). \The L1-consistency of Dirichlet mixtures in multivariate Bayesian density
estimation." Journal of Multivariate Analysis, 101(10): 2411{2419.


	Introduction
	Rationale and Construction Outline for Low-information Omnibus (LIO) Priors
	LIO Prior for DPM of Gaussian Distributions
	Model Specification
	Hyperparameter Selection for Scalar Data
	Hyperparamter Selection for Vector Data
	A Different View: Prior Specification on Mixture Components
	Examples

	DPM of Weibull Distributions
	Model Specification
	Hyperparameter selection
	Examples

	Sensitivity Analysis and Comparison with Empirical Methods
	Sensitivity Analysis
	Comparison with Empirical Methods

	Convergence Considerations
	Summary
	Equivalence Results
	Consistency results on the rescaled data

	Discussion
	References

