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pendix E, we provide an introduction to the BART R package. In Appendix F, we discuss how

to handle dependent censoring due to death. In Appendix G, additional details on the motivating

example are provided.

B. Recurrent events and Cox proportional intensity models

Recurrent events are often analyzed via Cox proportional intensity models (Kalb”eisch and Pren-

tice, 2002; Hosmer Jrand others, 2008). We will brie”y outline four Cox models commonly em-

ployed. We adopt the following notation: (si, δi, ti,xi(t)) where i = 1 , . . . ,m indexes subjects;si

is the length of the observation period;δi = 0 represents a censored event andδi = 1 is a death; Ni

is the number of events experienced during the observation period;ti = [ ti1, . . . , tiNi
]′ is a vector

of the event times; andxi(t
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hood contribution for each subject:

λ(ti1,xi
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non-events for the interval (0, si] for strata h = Ni, . . . , κ
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(Hastings, 1970) at the lth step as follows.

x∗
ik|xobs

i , xmis
i1 , . . . , xmis

i(k−1), fk, σ
2
k ∼ N

(
fk(xobs

i , xmis
i1 , . . . , xmis

, . . . , x

mis
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Therefore, we are forced to abandon discrete-time Cox models for comparison. Instead, we

will use continuous-time, counting-process Cox models and employ a tied event time correction

due to Efron (1977) that is a compromise between the discrete-time and continuous-time partial

likelihoods. Efron•s method will be at a slight disadvantage because of a loss of e�ciency due to

tied discrete event times, but it is a reasonable compromise.

D.1 Settings

These scenarios bear some resemblance to the motivating data example. As mentioned above, we

set the sample size atN = 250 that is roughly the size of the validation and training cohorts.
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of the example experienced 63.0% whereas the proportional (nonproportional) censoring is 50.9%

(65.2%) on average; see Table 2 for a comparison. Although, we did not pick these settings based

on the subsequent results of the simulations themselves, we also did not explore a wider space of

parameter settings. Therefore, this is a limitation of the simulation study.

D.1.1 Proportional Setting In the proportional setting, the relative intensity is constant with

respect to time given the covariates,�x(t(j)), which are constant in the time interval ( t(j−1), t(j)].
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cumulative intensity as follows.

�( t, �x(t)) =
k∑

j=1

wj(t)pj( �x(t(j))) where k = arg min
j

(t � t(j))

and wj(t) =
min( t, t(j)) − t(j−1)

t(j) − t(j−1)

See Figure 1 where we display the cumulative intensity for a simulated data set and the corre-

sponding estimates from our model.

D.1.2 Nonproportional Setting In the nonproportional setting, the relative intensity varies

with respect to time, and, as before, the covariates,�x(t(j)), are constant in the time interval

(t(j−1), t(j)]. As mentioned above, without loss of generality, we “x the length of the intervals in

our time grid at 30 days. Therefore, we will simulate from the following nonproportional intensity

for the Exponential distribution with rate αN (t(j), �x(t(j))).

α
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portional setting. For the proportional setting, the CPC is the correct model since it assumes

proportionality so this is a fair comparison; although, the CPC is at somewhat of a disadvantage

because Efron•s correction is not meant for discrete-time events. Furthermore, the CPC model

receives the advantage of the true covariates that generated the data:
(√

N (t(j−1)), x1, . . . , x20

)
.

Meanwhile, the BART model receives no such favoritism; rather, it is provided the covariates

per the conditional independence assumption, i.e.,
(
t(j), N (t(j−1)), v(t(j)), x1, . . . , x20

)
. This puts

BART at the added disadvantage of two extra noise variables,t(j) and v(t(j)), as well as having

to discern the correct functional form of N (t(j−1)). Also, we use BART with its default prior set-

tings, i.e., no attempt is made to pick optimal settings via cross-validation. This “rst comparison

is restricted to in-sample performance. Second, we compare the BART model•s in-sample and

out-of-sample performance for both the proportional and nonproportional settings. Since BART

is in the class of ensemble predictive models, theoretically, BART•s performance on in-sample vs.
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values. Note that the variance of the cumulative intensity increases with time. This presents a

challenge to summarize our “ndings since the scale at month 12 can be vastly di�erent than at

month 48; similarly, at 12 months, a low risk vs. a high risk subject can have very di�erent pro“les.

So, we divide the results into 6 realms per the quantiles of the true cumulative intensity: [0.00,

0.10); [0.10, 0.25); [0.25, 0.50); [0.50, 0.75); [0.75, 0.90) and [0.90, 1.00]. And, to make comparisons

of bias between realms, we also present the bias divided by the corresponding RMSE.

D.3 Results of comparisons

Here, we provide a brief summary. We examined single data sets seeking convergence with BART.

Based on these diagnostics (further described in Section E), the thinning parameter is set accord-

ingly for all data sets. In the proportional setting, BART and CPC performance are generally

consistent with a few exceptions in BART•s favor; the main point is that BART•s 95% interval

coverage attains nominal levels, see Table 3 for a numerical summary. We summarize the per-

formance via graphical summaries: RMSE in Figure 3, bias in Figure 4, bias/RMSE in Figure

5, interval coverage in Figure 6 and interval length in Figure 7. Also in the proportional set-

ting, BART•s in-sample vs. out-of-sample performance was comparable; the main point being

that BART•s 95% interval coverage for both attains nominal levels, see Table 3 for a numerical

summary. The graphical summaries are provided below: RMSE in Figure 8, bias in Figure 9,

bias/RMSE in Figure 10, interval coverage in Figure 11 and interval length in Figure 13. In the

nonproportional setting, BART•s in-sample vs. out-of-sample performance was comparable with
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E. The BART R package

Along with our partners in BART computing, we have created an R package calledBART

for continuous, dichotomous, categorical and time-to-event outcomes including survival analysis,
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> ## Geweke diagnostics for recurrent events with BART

> system.file(•demo/geweke.recur.bart.R•, package=•BART•)

> ## Diabetes and hospital admission example

> system.file(•demo/dm.recur.bart.R•, package=•BART•)

> ## Bladder cancer example for recurrent events with BART

> system.file(•demo/bladder.recur.bart.R•, package=•BART•)

As described, in Section 2.1, BART for dichotomous outcomes relies on either the probit

BART model with Normal latents (Albert and Chib, 1993; Robert, 1995); or the logistic BART

model with Logistic latents (Holmes and Held, 2006; Gramacy and Polson, 2012). BART for

time-to-event outcomes takes the discrete-time approach and, therefore, recasts the problem

as dichotomous outcomes. By default, BART for recurrent events utilizes Normal latents for

computational e�ciency. However, BART with Normal latents may have more di�culty than

Logistic latents in estimating probabilities vary close to zero or one since the Normal distribution

has relatively thinner tails. Therefore, BART with Logistic latents is available as an option by

specifying
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θ = h(f (x)), but often setting h to the identify function will su�ce, i.e., θ = f (x). However,

BART being a Bayesian nonparametric technique means that we have many potential estimators

to check, i.e., one estimator for every possible choice ofx.

We have supplied Figure 20 generated by the examplegeweke.recur.bart.R for the “rst

data set from the proportional setting of the simulation study. Based on reviewing “gures like

these, we chose a thinning parameter of 100 that is depicted here. In the upper left quadrant, we

have plotted Friedman•s partial dependence function forf (x1) vs. x1 for 10 values ofx1. This

is a check that can•t be performed for real data, but it is informative in this case. Notice that

f (x1) vs. x1 is directly proportional as expected. In the upper right quadrant, we plot the auto-

correlations of f (t(j),xi) for 10 randomly selectedt(j) and xi combinations wherei (j) indexes

subjects (time points). Notice that there is a combination that has fairly high auto-correlation,

but the rest are quite reasonable. In the lower left quadrant, we display the corresponding trace

plots for these same combinations. The traces demonstrate that samples off (t(j),xi) appear to

adequately traverse the sample space. In the lower right quadrant, we have selected 10 subjects

and we plot their corresponding GewekeZAB statistics over the time points. Notice that only 2

or 3 subjects ever reach the 95% boundaries and only rarely; given the number of comparisons,

600, this seems reasonable as well.

Now, we explore this single data set with respect to coverage calibration. You can “nd this

example in the “le exp.recur.bart.R . As we have seen in the simulation study, often the out-of-

sample interval coverage is slightly higher than the nominal level; and, furthermore, these interval

lengths are wider than the corresponding in-sample intervals. With real data, we can perform out-

of-sample interval calibration via cross-validation. In this case, we use “ve-fold cross-validation,

i.e., divide our data set into “ve roughly equal blocks. Then, perform “ve “ts each time holding

out one of the blocks for the out-of-sample validation. Based on these “ve “ts, determine the

equal-tail quantiles required to arrive at a 1-α level credible interval. With this data set, we
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determine that a roughly 95% out-of-sample coverage is obtained via a 90% interval constructed

from the 5% and 95% quantiles (rather than 2.5% and 97.5% for a 95% interval). You can compare

these two settings with respect to interval coverage in Figures 11 and 12; and interval length in

Figures 13 and 14.

Let•s return to the vignette (see Figure 22 and Section 2.2, display (2.3) which is copied below)

that we re-iterate for convenience. Suppose that we have two subjects with the following values:

N1 = 2 , s1 = 9 , t11 = 3 , u11 = 7 , t12 = 8 , u12 = 8 ⇒ y11 = 1 , y12 = y13 = 0 , y



16 R. A. Sparapani and others

$K [3,] 9 1 2 [3,] 7 4 1

[1] 6 [4,] 3 3 0 [4,] 8 5 1

[5,] 4 4 0 [5,] 9 1 2

[6,] 8 4 1 [6,] 12 4 2

[7,] 9 5 1 [7,] 3 3 0

[8,] 12 8 1 [8,] 4 4 0

[9,] 7 3 1

[10,] 8 4 1

[11,] 9 5 1

[12,] 12 8 1

Notice that $tx.test is not limited to the same time points as $tx.train , i.e., we often

want/need to estimate f at counter-factual values not observed in the data.

F. Recurrent events, dependent censoring, competing risks and BART

As has been described, dealing with dependent censoring in the recurrent events framework is

challenging (Cook and Lawless, 1997; Ghosh and Lin, 2000; Wangand others, 2001; Ghosh and
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admissions are instantaneous, i.e., hospital stays are of length zero.

We create a single grid of time points for the ordered distinct times based on either type
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procedures delivered. RVUs (Federal Register, 2010) are dictated by the US Medicare national

health insurance program for reimbursement purposes. An RVU represents the relative clinical

input (time, intensity, training, etc.) necessary to provide a given service; a service with a higher

RVU is reimbursed at a higher rate. Since we are interested in preventive opportunities, very

recent charges/RVUs are too closely related to services and procedures to be practically useful.

Therefore, we investigate chronologically distant previous charges/RVUs that are the sum total

of the following moving windows of days prior to any given date: 31 to 90, 91 to 180, 181 to 300.

For some patients, their signs were not available on a given date so they were set to missing;

similarly, if a sign was not observed within the last 180 days, then it was set to missing (except

height never expires, weight extended to 365 days and body mass index is a deterministic function

of the two). We used the Sequential BART missing imputation method as described in Appendix C

of the Supplement. However, instead of creating several imputed data sets, we imputed a new

sign at each date when it was missing, i.e., in order to address uncertainty with one data set, a

new value was imputed for each date that it was missing and never carried forward.

Conditions are binary indicators that are zero until the date of the “rst coding and then

they are one from then on (see Table 1 of the Supplement for the codes utilized). Based on

clinical rationale, we identi“ed 26 conditions (23 comorbidities and 3 procedures/surgeries) that

are potential risk factors for a hospital admission and/or possible complications of diabetes;

besides clinical merit, these conditions are chosen since they are present in more than just a

few subjects so that they may be informative. Similarly, we employed 15 general conditions
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disease that is a superset of kidney failure. These hierarchical de“nitions are intentional since we

would like to identify the narrowest risk factor de“nition wherever possible. And, the following

conditions are mutually exclusive so necessarily dependent: mild liver disease vs. moderate/severe

liver disease; and malignancy vs. metastatic solid tumor.

Supplementary References

Albert, J and Chib, S . (1993). Bayesian analysis of binary and polychotomous response data.

Journal of the American Statistical Association 88, 669…79.

Charlson, ME, Pompei, P, Ales, KL and MacKenzie, CR . (1987). A new method of

classifying prognostic comorbidity in longitudinal studies: development and validation.Journal

of Chronic Diseases40, 373…83.

Cook, RJ and Lawless, JF . (1997). Marginal analysis of recurrent events and a terminating

event. Statistics in Medicine 16, 911…24.

Efron, B . (1977). The e�ciency of Cox•s likelihood function for censored data. Journal of the

American Statistical Association 72, 557…65.

Fahrmeir, L . (1998). Discrete survival-time models. In:Encyclopedia of biostatistics. Chichester:

Wiley, pp. 1163…1168.

Federal Register . (2010, November). Medicare program: payment policies under the physician

fee schedule and other revisions to Part B for CY 2011. US Government Publishing O�ce.

[https://www.gpo.gov/fdsys/pkg/FR-2010-11-29/pdf/2010-27969.pdf].

Fine, Jason P and Gray, Robert J . (1999). A proportional hazards model for the subdis-

tribution of a competing risk.



20 SUPPLEMENTARY REFERENCES

O•Keefe Rosetti, MC . (2003). Risk adjustment using automated ambulatory pharmacy

data: the RxRisk model. Medical Care 41, 84…99.

Geweke, J . (1992). Bayesian Statistics, fourth edition., Chapter Evaluating the accuracy of

sampling-based approaches to calculating posterior moments. Oxford, UK: Clarendon Press.

Ghosh, D and Lin, DY . (2000). Nonparametric analysis of recurrent events and death.Bio-

metrics 56, 554…62.

Ghosh, D and Lin, DY . (2003). Semiparametric analysis of recurrent events data in the

presence of dependent censoring.Biometrics 59, 877…85.



SUPPLEMENTARY REFERENCES 21

Kapelner, A and Bleich, J . (2016). bartMachine: machine learning with Bayesian Additive

Regression Trees.Journal of Statistical Software 70, 1…40.

McCulloch, RE, Sparapani, RA, Gramacy, R, Spanbauer, C and Pratola, M . (2018).

BART: Bayesian Additive Regression Trees. [https://cran.r-project.org/package=BART].

Plummer, Martyn, Best, Nicky, Cowles, Kate and Vines, Karen . (2006). CODA:

Convergence Diagnosis and Output Analysis for MCMC.R News6(1), 7…11. [https://journal.r-



22 SUPPLEMENTARY REFERENCES

Table 1. Codes for conditions (* diagnostic codes and prescription orders combined)
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Table 2. Actual values compared to simulation settings summarized over 400 data sets
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Supplementary Figure 3. Proportional setting RMSE: we performed a simulated data study conforming
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Supplementary Figure 5. Proportional setting Bias/RMSE: we performed a simulated data study con-
forming to proportionality of the covariates and then we estimated the corresponding cumulative intensity
with a counting process Cox (CPC) model and recurrent events with BART. Here, we summarize the
results for the Bias/RMSE: BART (B in blue) vs. CPC (C in red). Bias/RMSE is summarized over realms
for the quantiles of the true cumulative intensity labeled a-f. Generally, BART and CPC are equivalent.
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Supplementary Figure 7. Proportional setting 95% Interval Length: we performed a simulated data study
conforming to proportionality of the covariates and then we estimated the corresponding cumulative
intensity with a counting process Cox (CPC) model and recurrent events with BART. Here, we summarize
the results for the 95% Interval Length: BART (B in blue) vs. CPC (C in red). 95% Interval Length is
summarized over realms for the quantiles of the true cumulative intensity labeled a-f. Generally, BART
interval length is longer that partially explains its better interval coverage. The only exception is in the
last realm, [0.90, 1.00], where the CPC results are poor across all metrics.
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Supplementary Figure 10. Proportional setting Bias/RMSE: we performed a simulated data study con-
forming to proportionality of the covariates and then we estimated the corresponding cumulative intensity
by recurrent events with BART. Here, we summarize the results for the Bias/RMSE: BART In-sample
(I in blue) vs. Out-of-sample (O in red). Bias/RMSE is summarized over realms for the quantiles of the
true cumulative intensity labeled a-f. In-sample and Out-of-sample performance are generally consistent
in the lower half of the realms where Out-of-sample is only slightly worse as anticipated. However, in
realms, [0.50, 0.75) and [0.75, 0.90), Out-of-sample is more noticeably worse while in the last realm, [0.90,
1.00], the opposite is the case.
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Supplementary Figure 14. Proportional setting 95% (90%) Interval Length for In-sample (Out-of-sample):
we performed a simulated data study conforming to proportionality of the covariates and then we es-
timated the corresponding cumulative intensity by recurrent events with BART. Here, we summarize
the results for the In-sample 95% vs. Out-of-sample 90% Interval Length: BART In-sample (I in blue)
vs. Out-of-sample (O in red). Interval Length is summarized over realms for the quantiles of the true
cumulative intensity labeled a-f. In-sample 95% Interval Length is closer to Out-of-sample 90% than to
Out-of-sample 95%.
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Supplementary Figure 15. Nonproportional setting RMSE: we performed a simulated data study not
conforming to proportionality of the covariates and then we estimated the corresponding cumulative
intensity by recurrent events with BART. Here, we summarize the results for the root mean square error
(RMSE): BART In-sample (I in blue) vs. Out-of-sample (O in red). RMSE is summarized over realms
for the quantiles of the true cumulative intensity labeled a-f. In-sample performance is generally better
than Out-of-sample except in the last realm, [0.90, 1.00].
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Supplementary Figure 16. Nonproportional setting Bias: we performed a simulated data study not con-
forming to proportionality of the covariates and then we estimated the corresponding cumulative intensity
by recurrent events with BART. Here, we summarize the results for the Bias: BART In-sample (I in blue)
vs. Out-of-sample (O in red). Bias is summarized over realms for the quantiles of the true cumulative
intensity labeled a-f. In-sample and Out-of-sample performance are generally consistent in the lower half
of the realms. However, in the upper half of realms, Out-of-sample is noticeably better.
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Supplementary Figure 18. Nonproportional setting 95% Interval Coverage: we performed a simulated
data study not conforming to proportionality of the covariates and then we estimated the corresponding
cumulative intensity by recurrent events with BART. Here, we summarize the results for the 95% Interval
Coverage: BART In-sample (I in blue) vs. Out-of-sample (O in red). 95% Interval Coverage is summarized
over realms for the quantiles of the true cumulative intensity labeled a-f. In-sample (Out-of-sample)
performance are generally nominal (near nominal) throughout with the exception of In-sample in the
last realm, [0.90, 1.00].
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Table 3. Summary of 95% Interval Coverage

Method CPC BART
Setting P P NP
Prediction I 95% I 95% O 95% O 90% I 95% O 95%
Overall 0.714 0.965 0.978 0.944 0.886 0.911
a 0.837 0.962 0.979 0.946 0.948 0.904
b 0.855 0.966 0.977 0.944 0.973 0.911
c 0.876 0.972 0.978 0.944 0.974 0.913
d 0.837
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