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ABSTRACT. With competing risks data, one often needs to assess the treat-

ment and covariate e�ects on the cumulative incidence function. Fine and Gray

proposed a proportional hazards regression model for the subdistribution of a

competing risk with the assumption that the censoring distribution and the co-

variates are independent. Covariate-dependent censoring sometimes occurs in

medical studies. In this paper, we study the proportional hazards regression

model for the subdistribution of a competing risk with proper adjustments for

covariate-dependent censoring. We consider using a covariate-adjusted weight

function by �tting the Cox model for the censoring distribution and using the

predictive probability for each individual. Our simulation study shows that the

covariate-adjusted weight estimator is basically unbiased when the censoring

time depends on the covariates, and the covariate-adjusted weight approach

works well for the variance estimator as well. We illustrate our methods with

bone marrow transplant data from the Center for International Blood and Mar-

row Transplant Research (CIBMTR). Here cancer relapse and death in complete

remission are two competing risks.

key words: competing risks; cumulative incidence function; proportional hazards model; sub-

distribution; inverse probability of censoring weight
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1 Introduction



P(C > t ), where C is the censoring time. Fine and Gray’s approach is based on the fact

that E [r (t)=GCf ( eT ^ C) ^ tgjData ] = 1 provided that censoring time is independent of the

covariates, and FG proposed using the Kaplan-Meier estimator to estimate the unknown

censoring distribution GC. However, in biomedical research studies, the censoring time may

depend on some of the covariates and the treatment group. In a clinical trial, patients may

be more likely to drop out with some speci�c value of covariate characteristics, and one

treatment group may have a higher dropout rate than the others (Mai, 2008). DiRienzo &

Lagakos (2001a,b) showed when the distribution of censoring depends on both treatment

group and the covariates, in general the null asymptotic distribution of the score test is

not centered at zero when the model is misspeci�ed, the tests of treatment group e�ect can

be severely biased. Heinze et al. (2003) showed that if the censoring distributions are not

similar in the two comparison groups, the log-rank test and �tting a regression model, such

as �tting a proportional hazards model, may not be valid. For the competing risks data,

one can show that E [r (t)=GCf ( eT ^ C) ^ tjDatagjData ] = 1, where GCf ( eT ^ C) ^ tjDatag

is the conditional censoring distribution given by Data . Thus, parameter estimates using

the inverse probability of censoring weighting approach with the Kaplan-Meier estimator

may be biased when the censoring distribution depends on some of the covariates. To

adjust the IPCW when censoring distribution depends on some of the covariates, Fine &

Gray (1999) suggested using a strati�ed Kaplan-Meier estimator for the discrete covariates

and assuming the Cox model for the continuous covariates. In this study, we considered a

regression model for the censoring distribution, such as a Cox proportional hazards model,



competing risks data structure. We introduce a regression-adjusted inverse weighted estima-

tion for the proportional subdistribution hazards model and present the asymptotic results

that can be used for inference. Simulation studies are provided in Section 3. In Section 4

we analyze two real data sets, which were originally studied by Kumar et al. (2012) and

by Ringd�en et al. (2012) using data from the Center for International Blood and Marrow

Transplant Research (CIBMTR). Concluding remarks are provided in Section 5.

2 Data and covariate adjusted censoring weight

Let eTi and Ci be the event time and right censoring time for ith individual, respectively.

� i 2 f 1; : : : ; K g indicates the cause of failure. For simplicity, we assume K = 2 in this

study. Let Ti = min( eTi ; Ci ) and �i = I ( eTi � Ci ). We observe n independent and identically

distributed (i:i:d: ) data f Ti ; �i ; �i � i ; Z i g for i = 1; : : : ; n, where Z i = (Z i 1; : : : ; Ziq)T are

associated covariates. We assume that ( eTi ; � i ) are independent of Ci given covariates of

Z i . We are interested in modeling the cumulative incidence function of cause 1, F1(t; Z ).

Based on Gray (1988b) subdistribution hazard technique, Fine & Gray (1999) proposed a

proportional subdistribution hazards model

� �
1(t; Z ) =

� d logf 1 � F1(t; Z )g
dt

= � �
10(t) exp

�
� T

0 Z
	

: (2.1)

There is a direct relationship between the CIF and subdistribution hazard function:

F1(t; Z ) = 1 � exp

�
�

� Z t

0
� �

10(u)du
�

e� T

0 Z
�

:

Let N 1
i (t) = I ( eTi � t; � i = 1) be the underlying counting process associated with cause

1. For right censored competing risks data, N 1
i (t) and Y 1

i (t) = 1 � N 1
i (t � ) are not fully

observed. For a censored individual, it is only observed up to the censoring time Ci . De�ne

r i (t) = I f Ci � ( eTi ^ t)g. Then, r i (t)N 1
i (t) and r i (t)Y 1

i (t) are computable for all time t. Let
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GC(t; Z ) = P(C � tjZ ) be the conditional censoring distribution. Based on

E
�

r i (t)N 1
i (t)

GC(Ti ^ t; Z i )

�
= E

�
E

�
r i (t)N 1

i (t)
GC(Ti ^ t; Z i )

�
�
�
� Z i

��

= E
�

N 1
i (t)jZ i

	 E f r i (t)jZ i g
GC(Ti ^ t; Z i )

= F1(t; Z i )

FG proposed using an inverse probability of the censoring weighting (IPCW) approach to �t

the model (2.1) and proposed an IPCW weight functionwKM
i (t) = r i (t) bGKM

C (t)=bGKM
C (Ti ^ t),

where bGKM
C (t) is the Kaplan-Meier estimator for the unknown censoring distribution. FG

proposed estimating the unknown regression coe�cient� by solving the score equation

U KM (� ) =
X

i

Z �

0

(

Z i �

P
j wKM

j (u 11.9552 Tf 14.09 2.
Z(



GC(t; X ) = P(C > t jX ) by

bGCOX
C (t; X ) = exp

n
� b�C0(t) exp

�
b
 T X

�o
; (2.2)

where b
 is a maximum partial likelihood estimate for 
 0 and b�C0(t) is a standard Nelson-

Aalen type estimator for the cumulative baseline censoring hazard �C0(t) =
Rt

0 � C0(u)du. In

this study, we considered a covariates-adjusted IPCW weight function

wCOX
i (t) = r i (t) bGCOX

C (t; X i )=bGCOX
C (Ti ^ t; X i ):

We estimated � in model (2.1) by solving the score equation

U COX(� ) =
X

i

Z �

0

(

Z i �

P
j wCOX

j (u)Y 1
j (u)Z j expf � T Z j g

P
j wCOX

j (u)Y 1
j (u) expf � T Z j g

)

wCOX
i (u)dN 1

i (u) = 0;

and denoted the estimate as b� COX. Then we estimated ��
10(t) by

b�COX
10 (t) =

X

i

Z t

0

wCOX
i (u)dN 1

i (u)
P

j wCOX
j (u)Y 1

j (u) exp
n

b�
T

COXZ j

o :

Under regularity conditions, it can be shown that
p

n
�

b� COX � � 0

�
converges in distribution

to a mean zero Gaussian distribution with an asymptotic variance that can be estimated by

b�COX
� = n

X

i

�



bF KM
1 (t; Z ) = 1� exp

n
� b�KM

10 (t) exp
�

b�
T

KM Z
�o

or bF COX
1 (t; Z ) = 1� exp

n
� b�COX

10 (t) exp
�

b�
T

COXZ
�o

,

respectively. Fine & Gray (1999) derived the large sample property for
p

n
n

bF KM
1 (t; Z ) � F1(t; Z )

o

when the censoring distribution is independent of the covariates. When the censoring distri-

bution depends on the covaraites through a Cox model, by functional Delta method, we can

show that
p

n
n

bF COX
1 (t; Z ) � F1(t; Z )

o
converges in distribution to a Gaussian process with

asymptotic variances, which can be estimated by

n
n

1 � bF COX
1 (t; Z )

o2 X

i

n
cW COX

F1 ;i (t; Z )
o2

;

where
cW COX

F1 ;i (t; Z ) = exp
�

b�
T

COXZ
� �

b�COX
10 (t)

�
cW

COX

� ;i

� T
Z + cW COX

� ;i (t)
�

:

Resampling techniques can be used to construct con�dence bands for ��
10(t) and F1(t; Z )

(Lin et al., 1994; Scheike et al., 2008).

3 Simulations

We compared the �nite-sample performance of the estimator using the covariate-adjusted

censoring weight to the unadjusted estimator using the Kaplan-Meier estimator for the cen-

soring distribution. Two simulation studies were considered to examine the potential bias

reduction with the covariate-adjusted censoring weight estimator. For the �rst study, we

had one binary covariate. For the second study, we considered one binary covariate and one

continuous covariate. In both studies, we compared the performances of estimators using

two weights, wKM
i (t) and wCOX

i (t), respectively.

3.1 Study 1

The regression model below has one binary covariate Z . Given Z , the cumulative incidence

functions are given by

F1(t; Z ) = 1 �
�

1 � p
�
1 � e� t

�	 exp9552 Tf 4.5syh7	



where p = F1(1j Z = 0). We let p = 0:66 and Z be a Bernoulli random variable, with a

value 1 for half of the sample and 0 for the other half. We set � = 1 and considered the

following three simulation scenarios.

Scenario 1 Censoring times are independent of Z :

Generate censoring times from an exponential distribution � exp(� C)

Set � C = 0:556 for 30% censoring, � C = 1:342 for 50% censoring

Scenario 2 Censoring times depend on Z by a Cox model:

Generate censoring times from a Cox model, � C(t jZ ) = � C exp(� CZ )

Set � C = 2:5 and � C = 0:137 for 30% censoring

Set � C = 2:5 and � C = 0:391 for 50% censoring

Scenario 3 Censoring times depend on Z , not by a Cox model:

C s U(0:25; 4:00), if Z



satisfactory results in estimating the covariate e�ect and cumulative baseline subdistribution

hazard function. Both estimators also have almost identical sample standard deviation and

similar MSE, which indicate that the potential e�ciency losses are minimum when using

covariate-adjusted censoring weight.

3.2 Study 2

The regression models below have one binary covariate Z1 and one continuous covariate Z2.

Given Z1 and Z2, the cumulative incidence functions are given by

F1(t; Z1; Z2) = 1 �
�

1 � p
�
1 � e� t

�	 exp(� 1Z1+ � 2Z2 )

and

F2(t; Z1; Z2) = (1 � p)exp(� 1Z1+ � 2Z2 )
�

1 � e� t exp(� 1Z1+ � 2Z2 )
	

:

We let p = 0:66, and Z1 is a Bernoulli random variable, with a value 1 for half of the sample

and 0 for the other half. Z2 is a N (0; 1) random variable. We set � 1 = 1; � 2 = 0:5 and

considered the following four scenarios.

Scenario 1 Censoring times are independent of Z1 and Z2

Generate censoring times from an exponential distribution � exp(� C)

Set � C = 0:547 for 30% censoring, � C = 1:352 for 50% censoring

Scenario 2 Censoring times depend on Z1 by a Cox model

Generate censoring times from � C(t jZ ) = � C exp(� C1Z1)

Set � C1 = 2:5. Set � C = 0:137 for 30% censoring,

� C = 0:397 for 50% censoring

Scenario 3 Censoring times depend on Z1 and Z2 by a Cox model

Generate censoring times from � C(t jZ ) = � C exp(� C1Z1 + � C2Z2)

Set � C1 = 2:5, � C2 = 2:5. Set � C = 0:082 for 30% censoring,

� C = 0:389 for 50% censoring

Scenario 4 Censoring times depend on Z1, not by a Cox model

C s U(0:25; 4:00), if Z1 = 0, C s U(0:07; 1:14), if Z1 = 1 for 30% censoring

C s U(0:25; 2:00), if Z1 = 0, C s U(0:06; 0:438), if Z1 = 1 for 50% censoring
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For each setting, we simulated 10,000 replicates with n = 100 and 300. The regression

coe�cients � 1 and � 2



versus 0 for HLA-identical sibling (N=584)), and prior autologous transplant (PREAUTO: 1

for Auto+Allo transplant (N=399) versus 0 for allogeneic transplant alone (N=465)).

First, we �t a Cox model for the censoring distribution where relapsed or dead individuals

are considered as censoring subjects. The hazard ratios (HR) are: HR(GP)=6.42 (P <

0:0001); HR(DNR)=0.48 (p = 0:0018); HR(PREAUTO)=1.73 (p = 0:0013). These results

indicate that the censoring distribution depends on the transplant time period, donor type

and prior autologous transplantation. Next, we �t a proportional subdistribution hazards

model (2.1) with the Kaplan-Meier estimated unadjusted weight and the Cox model adjusted

weight, and we computed the predicted cumulative incidence probability for a patient who

received an HLA-identical sibling donor allogeneic transplantation in 1995-2000 or in 2001-

2005 (see results in Table 3-4 and Figure 3). Both weights give similar estimates for TRM.

However, for cancer relapse, the regression estimate of the main treatment e�ect are �̂ = 0:38

and �̂ = 0:54 by unadjusted weight and Cox model adjusted weight, respectively. At three

years after transplant, the di�erences in cumulative incidence of relapse between late and

early transplant (TX) patients are 0.09 (CIF=0.34 for the late TX versus CIF=0.25 for

the early TX) and 0.13 (CIF=0.35 for the late TX versus CIF=0.22 for the early TX) by

unadjusted weight and Cox model adjusted weight, respectively. The unadjusted weight

underestimates the e�ect size of CIF of relapse by 4% compared to the point estimate using

the Cox model adjusted weight (Table 4). Underestimated e�ect size counts about 14%

(0.04/((0.22+0.35)/2)) of estimated average CIF, which leads to quite a large relative bias.

4.2 Example 2

We considered another CIBMTR study data set (Ringd�en et al., 2012) that consists of 177

myeloma patients who received a reduced-intensity conditioning allogeneic transplantation.

Cancer relapse and TRM were two competing risks in this study. 105 patients received

prior autologous transplant, and 72 patients received allogeneic transplant alone. We were

interested in transplant type e�ect on relapse and TRM. Let PREAUTObe the indicator of

transplant type (1 for Auto+Allo transplant versus 0 for Allogeneic transplant alone). Here

the



reduces a relative bias of 17% ((0:41 � 0:34)=0:41).

5 Concluding remarks

We have shown that the estimator using the Kaplen-Meier estimated unadjusted inverse

probability of censoring weight is not asymptotically unbiased when the censoring distribu-

tion depends on the covariates and the biases could be signi�cant for �xed sample sizes.

We considered a regression model for the censoring distribution, and we considered using

the Cox proportional hazards model and predicted censoring weight for each individual. We

have illustrated that the Cox model adjusted weight works well when censoring distribution

depends on the covariates, and potential e�ciency losses are minimal for both independent

and dependent censoring cases. With the transplant data, we determined that the covariate-

adjusted weight can be adopted to reduce bias. We are working on an R package, which will

be available to the public.

In this study, we only considered using the most common Cox proportional hazards

model for the censoring distribution. The Cox model requires a proportional e�ect (constant

e�ect) for each covariate. However, the proportionality assumption may not be true for

some of the covariates. When the Cox model does not �t the data well, one may consider

alternative regression models for the censoring distribution. An alternative model-based

weight function needs be considered, an e�cient variance estimator needs to be derived,

potential bias reduction needs to be studied, and a computing package needs to be further

developed as well.

Recently, the inverse probability of censoring weighting (IPCW) technique (Robins &

Rotnitzky, 1992) has been used extensively for right-censored survival data and, speci�cally,

for completing risks data. It has been shown that regression modeling of the censoring

distribution can be used to improve the e�ciency of the IPCW technique (Bickel et al.,

1993; Van der Laan & Robins, 2003; Scheike et al., 2008) even if the censoring distribution

is independent of the covariates. In this study, we showed that the covariate-adjusted IPCW

technique can be used to reduce bias for modeling the subdistribution hazard function when

censoring depends on the covariates. In general, the covariate-adjusted IPCW technique

should be considered to improve e�ciency and reduce bias.
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6 Appendix

Here we give a brief derivation for the variance estimation for
p

n
�

b� COX � � 0

�
and

p
n

�
b�COX

10 (t) � ��
10(t)

�
, and give explicit expressions for b�

COX

i ; b 
COX

i and cW COX
� ;i (t). Let

M 1
i (t) = N 1

i (t) �
Z t

0
Y 1

i (u) exp
�
� T

0 Z i
�

d��
10(u)du, which is a zero mean martingale for com-

plete data. Assuming the censoring distribution depends on covariates X through a Cox

proportional hazards model where X could be a subset covariates of Z ,

� C(t; X ) = � C0(t) expf 
 T
0 X g:

By Taylor’s approximation,

p
n

�
b� COX � � 0

�
=

p
n

n
I COX

�
b� COX

�o � 1
f U COX(� 0)g + op(1); (6.1)

where

U COX(� 0) � p

X

i

Z �

0
f Z i � E COX(� 0; u)gwCOX

i (u)dM 1
i (u)

=
X

i

Z �

0
f Z i � E COX(� 0; u)gr i (u)

GC(u; X i )

GC(Ti ^ u; X i )
dM 1

i (u) (6.2)

+
X

i

Z �

0

 
bGCOX

C (u; X i )

bGCOX
C (Ti ^ u; X i )

�
GC(u; X i )

GC(Ti ^ u; X i )

!

f Z i � E COX(� 0; u)gr i (u)dM 1
i (u) (6.3)

I COX(� ) = � @f U COX(� )g=@� (6.4)

and

S (k)
COX(� ; u) =

X

i

wCOX
i (u)Y 1

i (u)Z 
 k
i expf � T Z i g; for k = 0; 1; 2

E COX(� ; u) =
S (1)

COX(� ; u)

S(0)
COX(� ; u)

:

It has been shown that for given covariates X i (Andersen & Gill, 1982),
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bGCOX
C (t; X i ) � GC(t; X i ) � p � GC(t; X i )

�
e

�
b
 TX i

�

b�C0(t) � e(
 T
0 X i )�C0(t)

�

� p � bGCOX
C (t; X i )

X

j

cW C
COX;j (t; X i )

where

cW C
COX;j (t; X i ) = bh(t; X i )

T f I C(b
 )g� 1
Z �

0
f X j � E C(b
 ; u)gdcM C

COX;j (u;j



Now, it follows that Equation (6.2) can be approximated by
P

i
b�

COX

i , where

b�
COX

i =
Z �

0

n
Z i � E COX

�
b� COX; u

�o
wCOX

i (u)dcM 1
COX;i (u)

dcM 1
COX;i (t) = dN 1

i (t) � Y 1
i (t) exp

� �
b� COX

� T
Z i

�
db� COX

10 (t)

and for Equation (6.3), it follows that

(6:3) � p

X

i

Z �

0
f Z i � E COX(� 0; t)gT wCOX

i (t)dM 1
i (t)I (Ti < t )

X

j

n
cW C

COX;j (Ti ; X i ) � cW C
COX;j (t; X i )

o

� p

X

i

 
X

j

� Z �

0

n
Z j � E COX(b� COX; t)

oT n
cW C

COX;i (Tj ; X j ) � cW C
COX;i (t; X j )

o

� I (Tj < t )wCOX
j (t)dcM 1

COX;j (t)
i�

=
X

i

b 
COX

i

Thus,

p
n

�
b� COX � � 0

�
� p

p
n

n
I COX

�
b� COX

�o � 1
U COX(� 0)

� p
p

n
n

I COX

�
b� COX

�o � 1 X

i

�
b�

COX

i + b 
COX

i

�

whereb�
COX

i is the major term in the variance estimation. Next,
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p
n

n
b�COX

10 (t) � ��
10(t)

o
=

p
n

Z t

0

8
<

:

P
i wCOX

i (u)dN 1
i (u)

S(0)
COX

�
b� COX; u

� �
P

i wCOX
i (u)dN 1

i (u)

S(0)
COX (� 0; u)

9
=

;

+
p

n
Z t

0

( P
i wCOX

i (u)dN 1
i (u)

S(0)
COX (� 0; u)

� d��
10(u)

)

� p �
p

n
Z t

0
E COX(� 0; u)T

P
i wCOX

i (u)dN 1
i (u)

S(0)
COX(� 0; u)

�
b� COX � � 0� COX; u

� �
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Table 3: Fit a proportional subdistribution hazards model.
Unadjusted weight Cox model adjusted weight

Variable �̂ ; exp(� ) (95% CI); P �̂ ; exp(� ) (95% CI); P
RELAPSE

GP 0.38; 1.47(1.16-1.86); 0.0017 0.54; 1.71(1.34-2.20); < 0:0001
DNR 0.39; 1.48(1.18-1.86); 0.0007 0.35; 1.42(1.13-1.78); 0:0027

PREAUTO 0.41; 1.51(1.19-1.91); 0.0007 0.42; 1.53(1.21-1.93); 0:0004
TRM

GP � 0:59; 0.55(0.42-0.73); < 0:0001 � 0:56; 0.57(0.43-0.75); < 0:0001
DNR 0.57; 1.76(1.38-2.25); < 0:0001 0.55; 1.73(1.35-2.20); < 0:0001

PREAUTO � 0:38; 0.68(0.51-0.91); 0.0099 � 0:37; 0.69(0.52-0.92); 0:0117

Table 4: Predicted CIF of relapse and TRM for a patient who received an HLA-identical
sibling donor and allogeneic along transplantation

Unadjusted Weight Cox model adjusted Weight
1995-2000 2001-2005 1995-2000 2001-2005

Time F̂1 (95% CI) F̂2 (95% CI) jF̂1 � F̂2j F̂1 (95% CI) F̂2 (95% CI) jF̂1 � F̂2j
RELAPSE

1 Year 0.16 (0.13-0.19) 0.23 (0.18-0.27) 0.07 0.15 (0.13-0.17) 0.24 (0.18-0.30) 0.09
3 Year 0.25 (0.20-0.29) 0.34 (0.28-0.40) 0.09 0.22 (0.20-0.25) 0.35 (0.28-0.42) 0.13
5 Year 0.29 (0.24-0.34) 0.40 (0.33-0.46) 0.11 0.26 (0.24-0.30) 0.41 (0.33-0.49) 0.15

TRM
1 Year 0.38 (0.32-0.43) 0.23 (0.18-0.28) 0.15 0.37 (0.34-0.41) 0.23 (0.17-0.29) 0.14
3 Year 0.42 (0.37-0.48) 0.26 (0.20-0.32) 0.16 0.42 (0.38-0.46) 0.27 (0.20-0.33) 0.15
5 Year 0.44 (0.38-0.49) 0.27 (0.21-0.33) 0.17 0.43 (0.39-0.47) 0.27 (0.21-0.34) 0.16
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Figure 1: Simulation results (1 covariate) for biases of cumulative baseline subdistribution
hazards at t = (0:25; 0:5; 0:75; 1)T .
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Figure 2: Simulation results (2 covariates) for biases of cumulative baseline subdistribution
hazards at t = (0:25; 0:5; 0:75; 1:00)T .
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