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Abstract

In functional magnetic resonance imaging (fMRI), a process of determining statistically significant brain

activation is commonly performed in terms of voxel time course measurements after image reconstruction.

The image reconstruction and statistical activation processes are treated separately. In this manuscript,

the relationship between complex-valued (Fourier) encoded k-space measurements and complex-valued image

measurements from (Fourier) reconstructed images is described. The voxel time-series measurements are

written in terms of spatio-temporal k-space measurements utilizing this spatial frequency k-space and image

relationship. Voxel fMRI activation can be determined in image space for example using the Rowe-Logan

complex-valued activation model [Rowe, D.B., and Logan, B.R. (2004). A complex way to compute fMRI

activation. NeuroImage, 23 (3):1078-1092] in terms of the original k-space measurements. Additionally, the

spatio-temporal covariance between reconstructed complex-valued voxel time series can be written in terms of

the spatio-temporal covariance between complex-valued k-space measurements. Knowledge of the relationship

between the spatio-temporal k-space measurements can be modeled in the more naturally acquired state rather

than in a transformed state. This allows for the partitioning of the covariance matrix between the k-space

measurements and hence voxel measurements into sources of covariation. Statistical associations between

individual voxels or regions of interest can be quantified utilizing unmodeled sources of covariation.

1 Introduction

In functional magnetic resonance imaging (fMRI), the processes of image reconstruction (Kumar, et al., 1975;

Haacke et al., 1999) and statistical activation (Bandettini et al., 1993; Friston et al., 1994) have been treated

separately. The determination of statistically significant brain activation is in terms of voxel measurements after

reconstruction. The relationship between the original k-space measurements and voxel measurements for each

image is described. A permutation matrix is utilized to reorder the voxel measurements and statistical functional

brain activation can be determined with complex-valued activation models (Nan and Nowak, 1999; Rowe and
∗Corresponding Author: Daniel B. Rowe, Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road,
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Logan, 2004,2005; Rowe, 2005a,b). A map of these activation statistics can then thresholded to determine

statistically significant activation while adjusting for multiple compariations (Logan and Rowe, 2004).

2 Methods

In fMRI, data generally consist of two-dimensional slices acquired from an echo-planar imaging (EPI) pulse

sequence. The py × px dimensional complex-valued spatial frequency measurement SC of a slice consists of a

py × px dimensional matrix of true underlying noiseless complex-valued spatial frequencies S0C and a py × px

dimensional matrix of complex-valued measurement error EC that can be represented as

SC = (S0R + iS0I) + (ER + iEI) (2.1)

where i is the imaginary unit while S0R, S0I , ER and EI are real and imaginary matrix valued parts of the true

spatial frequencies and measurement noise. Let ΩCx and ΩCy be px × px and py × py complex-valued Fourier

matrices such that

ΩCy = ΩRy + i ΩIy and ΩCx = ΩRx + i ΩIx (2.2)

where ΩRy and ΩRx are real while ΩIy and ΩIx are imaginary matrix valued parts. Then, the py × px complex-

valued inverse Fourier transformation reconstructed image RC of SC can be written as

RC = ΩCy ∗ SC ∗ ΩT
Cx

= ΩCy(S0R + iS0I)ΩT
Cx + ΩCy(ER + iEI)ΩT

Cx

= R0C + NC

where RC has a true mean R0C and measurement error NC while “T ” denotes transposition. If ΩCx is a Fourier

matrix, it is [ΩCx]jk = κ
(
ωjk

)
where κ = 1 and ω = exp[−i2π(j − 1)(k − 1)/px] for the forward transformation

while κ = 1/px and ω = exp[+i2π(j − 1)(k − 1)/px] for the inverse transformation, where j, k = 1, ..., px. The

complex-valued matrices for reconstruction Ωx and Ωy need not be exactly Fourier matrices but may be Fourier

matrices that include adjustments for magnetic field inhomogeneities derieved from phase maps or reconstruction

matrices for other encoding procedures.

This inverse Fourier transformation image reconstruction process can be equivalently described as the pre-

multiplication of the complex-valued spatial frequencies in the form of a real-valued vector s by a real-valued

matrix representation Ω of the complex-valued Fourier matrices

r = Ω ∗ s
 rR

rI


 =


 ΩR −ΩI

ΩI ΩR


 ∗


 sR

sI


 (2.3)

where the real-valued representation r that is of dimension 2pxpy × 1 of the complex-valued image has a true

mean and measurement error. The real-valued vector of spatial frequencies is formed by

s = vec(ST
R , ST

I )
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where SR and SI denote the real and imaginary parts of SC and vec(·) denotes the vectorization operator that

stacks the columns of its matrix argument. In addition, the matrix elements of Ω are

ΩR = [(ΩyR ⊗ ΩxR) − (ΩyI ⊗ ΩxI)] (2.4)

ΩI = [(ΩyR ⊗ ΩxI) + (ΩyI ⊗ ΩxR)] (2.5)

where ⊗ denotes the Kronecker product that multiplies every element of its first matrix argument by its entire

second matrix argument. If the mean and covariance of the spatial frequency measurement vector s that is of

dimension 2pxpy × 1 are s0 and Γ, then the mean and covariance of the reconstructed voxel measurements r are

Ωs0 and ΩΓΩT .

In fMRI, a series of the previously described slices are acquired. Denote the py × px random complex-valued

spatial frequency matrix at time t as SCt = S0Ct + ECt and define st = vec(ST
Rt, ST

It), where SRt and SIt are the

real and imaginary parts of SCt for time points t = 1, ..., n. Define the total number of voxels in the image, which

is the same as the number of complex-valued k-space measurements to be p = pxpy. This sequence of measured

spatial frequency vectors can be collected into a 2p×n matrix S = (s1, ..., sn) where the tth column contains the

p real k-space measurements stacked upon the p imaginary k-space measurements for time t. Having done this,

n reconstructed images can be formed by the 2p × n matrix R = ΩS where the tth column of R contains the p

real voxel measurements stacked upon the p imaginary voxel measurements for time t, t = 1, ..., n.

The k-space measurements and the image voxel measurements can be stacked as s = vec(S) and r = vec(R).

Note that s and r and have been redefined from their previous definition. If the mean and covariance of the

2np × 1 vector of spatial frequency measurements s are s



2005) can be found by choosing the phase θjt = uT
t γ where ut is the tth row of a phase design matrix U and γ

are phase regression coefficients.

This can be rearranged and written with y = vec(Y ) as





 yR1

yI1




...
 yRp

yIp







=





 C1X 0

0 S1X


 0

.. .

0


 CpX 0

0 SpX











 β1

β1




...
 βp

βp







+





 ηR1

ηI1




...
 ηRp

ηIp







(2.7)

where y = (yT
R1, yT

I1, ..., yT
Rp, yT

Ip)T is a vector containing the real and imaginary reconstructed voxel measurements

and η = (ηT
R1, ηT

I1, ..., ηT
Rp, ηT

Ip)T is a vector containing the real and imaginary errors of the reconstructed voxel

measurements. The model can simply be written as y = µ + ε. For example, with constant phase model, the

mean is µ = (I2p ⊗ X)[(cos θ1, sin θ1) ⊗ βT
1 , ..., (cosθp, sin θp) ⊗ βT

p ]T .

The rearrangement of the voxel measurements from r to y is a linear transformation and can be achieved

through a permutation matrix P (described in Appendix A) to form y = P r. In terms of the original k-space

measurements the voxel time courses are y = P (In ⊗ Ω)vec(vec(ST
R1, ST

I1), ..., vec(ST
Rn, ST

In)). A permutation

matrix is a square matrix that can be obtained by permuting (rearranging) either the columns or rows of

an identity matrix (Harville, 1999). A permutation matrix is of full rank and therefore nonsingular and also

invertible. Having done this linear transformation, the mean and covariance of y are µ = P (In ⊗ Ω)s0 and

Λ = P (In ⊗ Ω)∆(In ⊗ ΩT )P T . Since the matrices Ω and P that convert k-space measurements s to voxel

measurements y are known a priori, the expression y = P (In ⊗Ω)s can be inverted to write s = (In ⊗Ω−1)P−1y

in terms of the parameters as




s1
...

sn


 = P−1

[
In ⊗ Ω−1(I2 ⊗ X)

]
︸ ︷︷ ︸

Known




β1 cos θ1

β1 sin θ1
...

βp cos θp

βp sin θp




+




ε1
...

εn


 (2.8)

then the optimization for the regression coefficients (β) and phases (θ) can be performed in k-spacesto yield the

same parameter estimates. Activations can then be computed from Rowe’s complex activation models.

Using ordinary least squares or a normal distributional specification on the errors, the voxel-wise regression

coefficients and phases can be determined to yield the same point estimators as in Logan and Rowe (2004).

The Rowe-Logan unconstrained alternative hypothesis estimators (with hats) for H1: Cβ 6= 0 along with the

constrained null hypothesis estimators (with tildes) for H0: Cβ = 0 in voxel j are

θ̂j = 1
2 tan−1

[
β̂T

Rj (X
′X)β̂Ij

(β̂T
Rj(X

′X)β̂Rj−β̂T
Ij(X

′X)β̂Ij)/2

]
θ̃j = 1

2 tan−1

[
β̂T

RjΨ(X′X)β̂Ij

(β̂T
RjΨ(X′X)β̂Rj−β̂T

IjΨ(X′X)β̂Ij )/2

]

β̂j = β̂Rj cos θ̂j + β̂Ij sin θ̂j β̃j = Ψ
[
β̂Rj cos θ̃j + β̂Ij sin θ̃j

] (2.9)
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where C is an r×(q+1) matrix of full row rank, Ψ = Iq+1−(X ′X)−1C′[C(X ′X)−1C′]−1C, β̂Rj = (X ′X)−1X ′yRj ,

and β̂Ij = (X ′X)−1X ′yIj , while yRj and yIj are the n × 1 vectors of real and imaginary voxel observations.

The variances and covariances for example with a specification of uncorrelated temporal k-space measure-

ment vectors (st) yields the covaraince matrix Λ = In ⊗ ΩΓΩT for the voxel measurements. Define the voxel

measurement covariance matrix to be Σ = ΩΓΩT . Having estimated the voxel-wise regression coefficients and

phases, we can estimate the mean of the vector of voxel measurements y by µ̂ (under the alternative hypothesis)

and the mean of the matrix of voxel measurements R by M̂ = vec(P−1µ̂). Here vec(·) is the operator that is the

inverse operation of the vec(·) operator. The voxel covariance matrix is

Σ =


 Σ11 Σ12

ΣT
12 Σ22


 (2.10)

where the partitioned matrix elements are

Σ11 = Ω
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Figure 1: Complex-valued 2D forward Fourier transform

3 Example
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(h) Image imaginary RI

Figure 2: Complex-valued 2D inverse Fourier transform

imaginary image part SI in Figure 2d by the complex-valued inverse Fourier matrix ΩCy presented as an image

with real part ΩRy in Figure 2a and imaginary part ΩIy in Figure 2b then post-multiply the result by the

transpose of the symmetric inverse Fourier matrix ΩCx presented as an image with real part ΩRx in Figure 2e

and imaginary part ΩIx in Figure 2f. The recovered complex-valued image RC is presented with real part RR

in Figure 2g and imaginary part RI in Figure 2h.



real-valued representation often called an isomorphism in mathematics. To use this representation, join the

transpose of the real and imaginary parts of the spatial frequency (k-space) values given in Figure 2c and

Figure 2d respectively that are of dimension py × px into a single real-valued matrix ST = (ST
R , ST

I ) that is of

dimension px × 2py as in Figure 3a. Then stack the columns of ST as shown partitioned in Figure 3b into a

single vector s = vec(ST
R , ST

I ) as presented in Figure 4b. This gives us a real-valued vector representation of the

matrix of spatial frequency (k-space) values.
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(b) combined image RT =

(RT
R, RT

I )

Figure 5: Vector to matrix image values.

vector form of the spatial frequencies for an image similar to that in Figure 4b.

The mean on images contained voxels with values β0
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(a) noisy R=ΩS
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(c) error N=ΩE

Figure 7: Reconstructed noisy images.

of %2 = .5 while the px×px correlation matrix Γ3 is taken to be an AR(1) correlation matrix with (i, j)th element

%
|i−j|
3 where %3 = 0.5.
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(b) reconstruction matrix (In ⊗ Ω)
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(c) noisy s

Figure 8: Reconstructed vectorized noisy images.

Each matrix image in Figure 6a, b, and c was pre-multiplied by the (inverse Fourier transform) image
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(a) sample between voxels
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(b) theoretical between voxels

16 32 48 64 80 96 112 128

16

32

48

64

80

96

112

128 −1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(c) sample between frequencies
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(d) theoretical between frequencies

Figure 11: Correlation matrices

permutation matrix P that form the n imaginary measurements within the first second have a 1 in column

t = p + 2, 3p + 2, 5p + 2, ..., 2(n− 1)p + p + 2. This general pattern continues so that the tth row within the

(2p − 1)th set of n rows of the permutation matrix P that form the n real measurements within the pth voxel

have a 1 in column t = 0p + p, 2p + p, 4p + p, ..., 2(n− 1)p + p. The tth row within the second set of n rows of

the permutation matrix P that form the n imaginary measurements within the first second have a 1 in column

t = p + p, 3p
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