].-

at a aa a f aay 3] 34 34 y a] a, 5 a aayaa] > • > • • • •] • • • •] Ą -

🗭 44V

•
$$a^3$$
 a_{γ} a^1 a_{γ} a_{γ}

Abstract

$PCE \quad P \ E_i$.

$FWE \quad P \quad _iE_i$.

] $v \in s$; $v_{i} = a_{i} \in [m_{i} = i]$			
	4 44 A		
• >] > _i ,]•+]- >.↓	_ ابجد _ه[
4	U	V	m
v.a] 3.4	T	S	m
	Y	R	m

4 3 5 ; 4 4 (. T] 3 4

 $FDR \quad E \ V/R$,

• •] • , V/R , find the set of the set o

$$FDR PR > PV > FWE.$$

 $FWE P _{i}E_{i} P E \cdots P E_{m} m\alpha' \alpha.$

 $\begin{bmatrix} a & fi & a_{\gamma} & fi_{\gamma} & b & a_{\gamma} & a_{\gamma$

$$E \hspace{0.1 cm} d \hspace{0.1 cm} S \hspace{0.1 cm} \pi \hspace{0.1 cm} {}^{-(m+ \hspace{0.1 cm})/} \hspace{0.1 cm} W^{-m} p_i^{-m} \hspace{0.1 cm} \bullet \hspace{0.1 cm} -p_i/ \hspace{0.1 cm} .$$

ese a ane]a a fi sarae da ango seyraa s] $[T/_{\gamma} \circ] \circ_{A} \circ_{A} \circ \bullet \bullet \bullet \bullet \circ_{\gamma} \circ_{A} \circ_{\gamma} \bullet \bullet \circ \circ_{\gamma} \circ_{A} \circ_{\gamma} \bullet \bullet \circ \circ_{\gamma} \circ_{A} \circ_{\gamma} \circ_{\gamma} \circ_{\gamma} \circ_{A} \circ_{\gamma} \circ$ $[T_{i}] = [T_{i}] = [T_{$ • •] كم مم ك] ب] •] م م ب] • م أَوَ مُهَاتُه م • • • ك] كمبرمات • • ك] • م [•] •] • م •] • م •] • م •] • م •] 3 \bullet a a a b a a b a a b a a b • app a • • 3] 3aa ap •] a a p] • a 5 2 p • • 3] 3aa ap • 7 p]] T a P a 3aa a a anter v sa s a sa saa as aa jiraar v به [د[دیهد] به چې از په به د (i] به به د ت د به از مه [به [د به به قَحَالَ إِنَّا مِنْ ٩ هِ ٩ هِ [دَنْبَعَ مِهْدَ[دَمَنْ مَحَدَ هِ مَ] مَ عَدَ اللَّهُ اللَّهُ اللَّهُ ال م] معمد م الم معمد (الم مع معمد (الم مع الم معمد (الم $[\mathbf{r}_{\mathbf{r}}, \mathbf{r}_{\mathbf{r}}]$ سهد ب[اب د تهیرد[بد ب⊷ به به[د[د به م به د ب به به د [ب] د ب ••] 34 3 4 34 T AT 0 4 4 4 4] yy 44 3 4 4 4 4 3 به[دېم پ[__اچېد[یېد[۳۰-[به مړیې په د _ېېېم و[پ په پېېېد[د یې و د د د چې]] .]

 \mathbf{F}

بلم عباته [به م [به م عبر الم الم الم عبر الم الم عبر الم الم عبر الم الم الم عبر الم الم الم الم ا $\mathbf{A} = \left[\mathbf{A} + \mathbf{A} + \mathbf{A}$ $p_{(i)} = \frac{i}{m} \frac{q}{\sum_{i=1}^{n} i}.$ • t₂ $pFDR \quad E \ V/R/R > \quad .$ $pFDR \quad p \quad P \quad H_i \quad (|T_i| > \gamma),$ د ۲۰ [به محمد [د برد برد محمد [محمد] معد [معمه محمد] محمد [مع معمه محمد مع • , , , , ,] : $|T_i| > \gamma$ • , pFDR E V/R/R > $E_{R>}$, E V/R/R $E_{R>}$ p V S / V S p.

 $\begin{array}{c} \cdot \neg + \gamma + a^{2} \cdot |e| \\ \cdot |e|$

$$pFDR \quad q \qquad p_{(i)} \quad \frac{i}{m}q.$$

 $(\overline{x}, \overline{x}, \overline{y}, \overline{y$

•••
$$\gamma$$
 a 2 a γ a γ

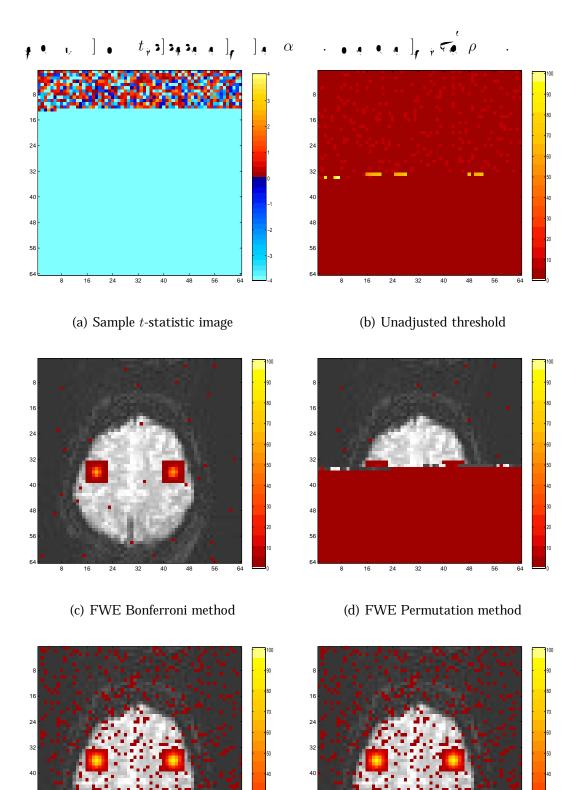
$$E\left[\frac{R \ \gamma}{R \ \gamma \ S \ \gamma}\right] \quad (\gamma \ C \left[\frac{V \ \gamma}{V \ \gamma \ S \ \gamma}\right].$$

 $\rightarrow \gamma$, γ , γ , γ , γ , γ , γ , γ

$$S \gamma = R \gamma - mp_{\gamma},$$

$$\widehat{FDR}_{YB} \gamma \qquad E\left[\frac{R \quad \gamma}{R \quad \gamma \quad S \quad \gamma}\right].$$

$$\begin{array}{c} \bullet & \bullet \\ \gamma \end{array}] \begin{array}{c} \bullet & \bullet \\ \gamma \end{array}]_{f} \quad b \quad \bullet \\ \bullet & \bullet \end{array} \end{array} \begin{array}{c} R^{b} \quad \gamma \end{array} \begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \end{array} \left[t_{i}^{b} \right]_{r} \quad \bullet \\ \bullet \\ \bullet \end{array} \begin{array}{c} \bullet \\ \delta \end{array} \begin{array}{c} \bullet \\ \bullet \end{array} \right]_{f} \qquad \bullet \\ \gamma \end{array}$$

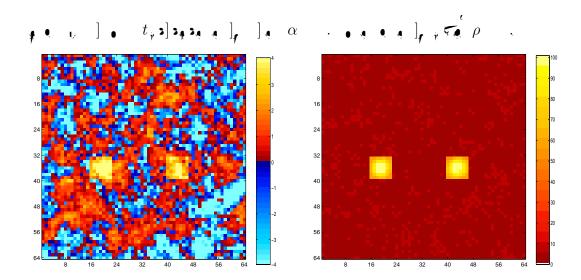

$$\widehat{FDR}_{YB} \gamma = \sum_{b=1}^{B} \left[\frac{R^{b} \gamma}{R^{b} \gamma - S \gamma} \right].$$

 \mathbf{F}

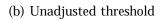
ې د به به د د کې [د د به به به د د به به د اید [به د به به به د د ب]**. ⊮**]]> --- 3 [بن بن بن به به محمد [لهد [ب]] م ممنو هر هر الم عمد منه [حال من من م Va , 3], a] . 50 a 5 a 200 a 5 a Va , a] بېړډ (دې بې•• به [بد د[۹ب به ←∽-- $[\mathbf{x}_{\mathbf{x}}] = \mathbf{x}_{\mathbf{y}} = \mathbf{x}_{\mathbf{y}} = \mathbf{x}_{\mathbf{x}} = \mathbf{x}_{\mathbf{x}}$ $\mathbf{v}_{\mathbf{a}}$, \mathbf{a}] n $\mathbf{a}_{\mathbf{a}}$, $\mathbf{a}_{$ Y X B E $n \times p$ $n \times q$ q $\times p$ $n \times p$ [a, a]] [a, a]] [a, a] [a, a] [a, a] [a, a] [a, a] [a, a]] a ay faysa ag] a n a ay ana] V sa a ay sa a a ag] s] a n

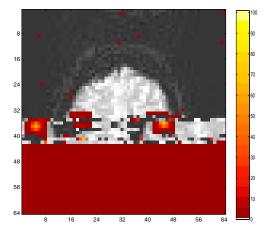
A AVANA] $\forall 20 a = 2 a + 3 a + 3 a + 4 a + 3 a + 4 a + 3 a + 4 a + 3 a + 4 a + 3 a + 4 a$

$$B \ i, j \qquad e^{-\frac{(i-i')^2 + (j-j')^2}{2(2)}}$$

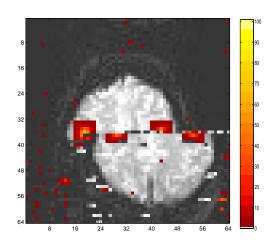

16

5 24 32 40 48 56 (f) FDR YB method

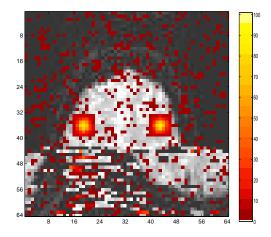

(e) FDR BH method

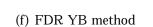

48 56

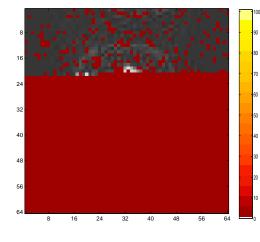
8 16 24 32 40 48 56

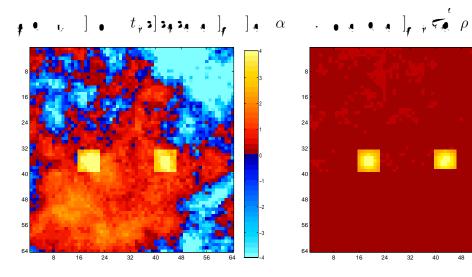


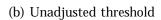
(a) Sample *t*-statistic image

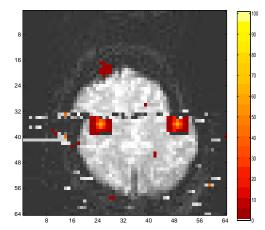


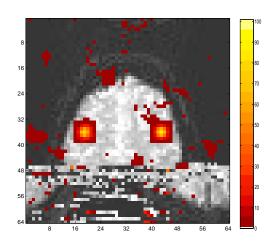


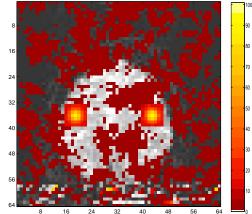

(c) FWE Bonferroni method


(d) FWE Permutation method

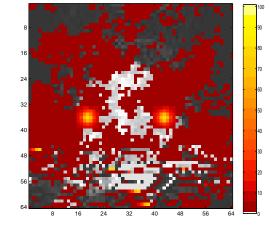



(e) FDR BH method

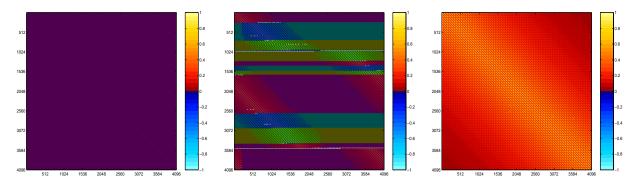

(a) Sample *t*-statistic image


.

(c) FWE Bonferroni method



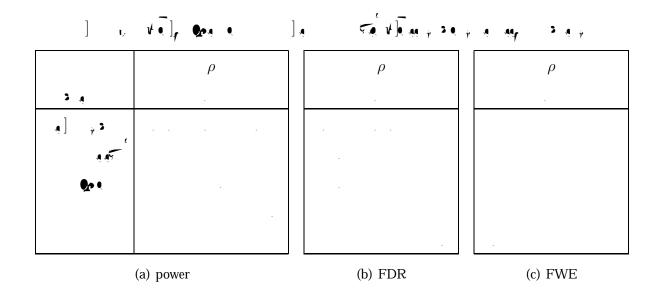
(d) FWE Permutation method

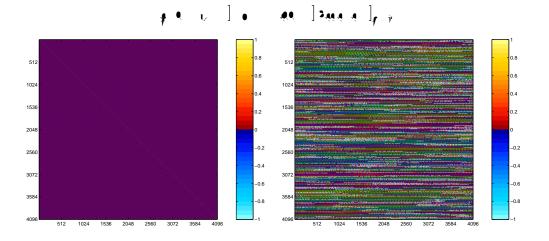

(f) FDR YB method

(e) FDR BH method

 $= \mathbf{f}_{\mu} \mathbf{s}_{\mu} + \mathbf{f}_{\mu} \mathbf{e}_{\mu} \mathbf{f}_{\mu} \mathbf{e}_{\mu} \mathbf{f}_{\mu} \mathbf{e}_{\mu} \mathbf{f}_{\mu} \mathbf{e}_{\mu} \mathbf{e}_$ \cdot at $[a, a_{i}, a_{j}, a_{$ \mathbf{x}_{i0}] \mathbf{x}_{i}] \mathbf{x}_{i} , \mathbf{x}_{i}] \mathbf{x}_{i} , \mathbf{x}_{i}] \mathbf{x}_{i} \mathbf{x}_{i}] \mathbf{x}_{i}] \mathbf{x}_{i} \mathbf{x}_{i}] $\mathbf{x}_{$ $[]_{\mu}$ a^{22} $[]_{\mu}$ a^{2} a^{2} a; a]e aa;]a a a a a - 3a]; ; e a a]; > ρ · ; a]e aa ښم[به 3[به ښد ډبه به به ۲۵ [3[۲] به م[به ۳۰۰ به ۲۹۹ $[\mathbf{a}, \mathbf{a}] \mathbf{e} = \mathbf{a} = \mathbf$ مېمد [چې چې جې د ff په چې د دنې په د په د په چې په چېد [چې [مد [م. د م. په د ، د به به د به ب AARAA4, e_A $e_$ · a] a. Ta] a g a va ,]]. Jaa. Ta a ve. Ta e sa $[a_{A}] \times \forall \overline{A} \quad A_{A} \quad$ - Ay 2 AF 2 y - Ay 2 A - A + A - A + A - 3 + 2 + 2 + 3 + 0 [Ay A + y + AF 2 + 0] 2 AA A $\mathbf{A} = \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} \end{bmatrix} \mathbf{A} = \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} \end{bmatrix} \mathbf{A} = \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} \end{bmatrix} \mathbf{A} = \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} \end{bmatrix} \mathbf{A} = \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} \end{bmatrix} \mathbf{A} = \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} \end{bmatrix} \mathbf{A} = \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} \end{bmatrix} \mathbf{A} = \begin{bmatrix} \mathbf{A} & \mathbf{A}$ مهد[بعر مع به به م م [دير] لا [ددير ب ه د ښه] من ب به (به به (به به د) مع به م به اله ا

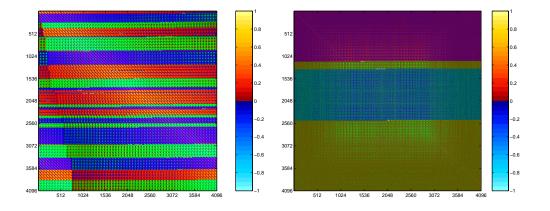
4 1, 200] Jana 40] Jana 4], 4

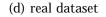


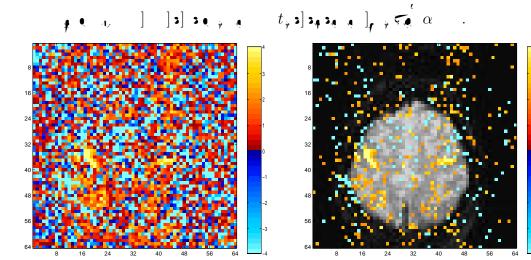

(a) $\rho = .00$

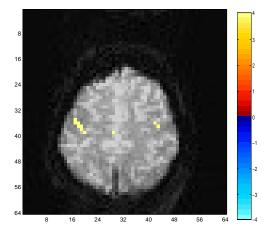
(b) $\rho = .70$

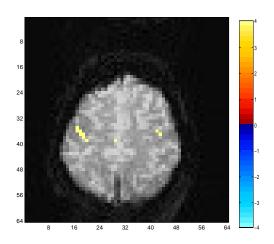
(c) $\rho = .95$


 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ
 φ

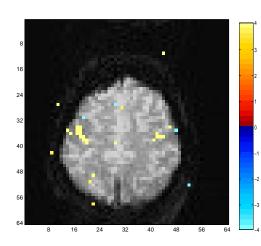


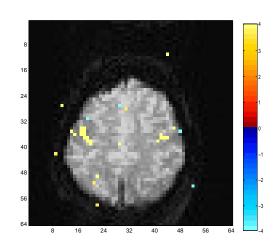


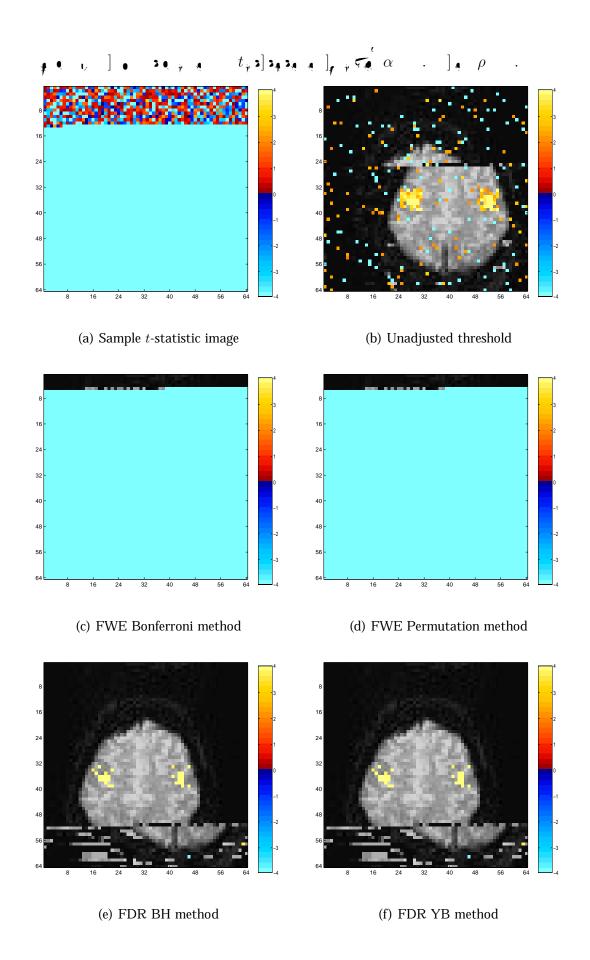


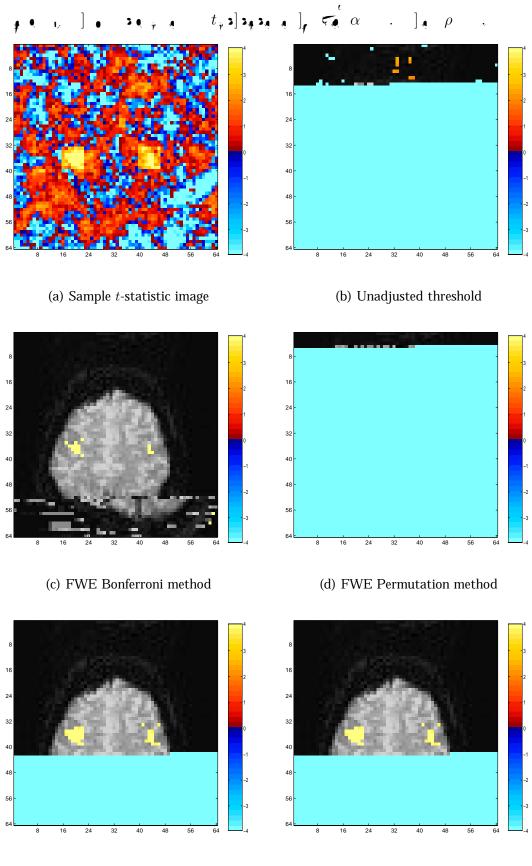


(a) Sample *t*-statistic image

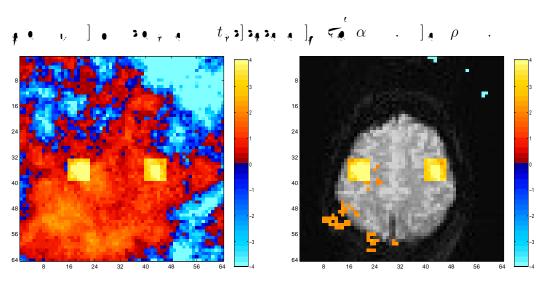


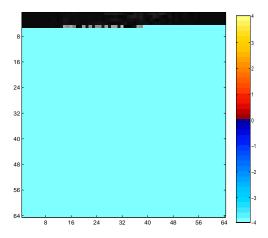

(c) FWE Bonferroni method


(d) FWE Permutation method

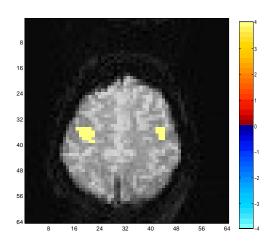


(e) FDR BH method

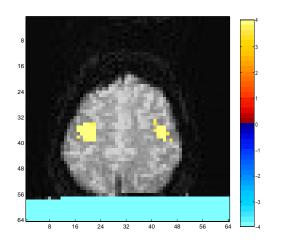

(f) FDR YB method

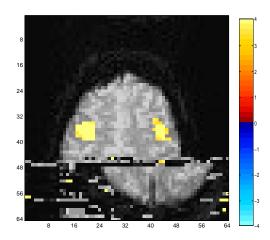

(e) FDR BH method

(f) FDR YB method



(a) Sample *t*-statistic image




(c) FWE Bonferroni method



(d) FWE Permutation method

(e) FDR BH method

AA • > A > []

- Bandettini, P.A., Jesmanowicz, A., Wong, E.C., and Hyde, J.S. (1993). Processing strategies for time-course data sets in functional MRI of the human brain.
 z_______, 30: 161-173.
- Benjamini, Y. and Hochberg, Y. (1995). Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing.
 r
 S z_ B, 289-300.
- Benjamini, Y. and Hochberg, Y. (2000). On Adaptive Control of the False Discovery Rate in Multiple Testing with Independent Statistics. r = B = r S = z = r
 S = z = r
- Benjamini, Y. and Yekutieli, D. (2001). The Control of the False Discovery Rate in Multiple Testing under Dependency. A S t_t_ , 29: 1165-1188.
- Cox, R.W., Jesmanowicz, A., and Hyde, J.S. (1995). Real-time functional magnetic resonance imaging.
 z_z_, 33: 230-236.
- 6. Friston, K.J., Frith, C.D., Liddle, P.F., and Frackowiak, R.S.J. (1991). Comparing functional (PET) images: the assessment of significant change. *r Cr r B z* , **11**: 690-699.
- 7. Friston, K.J., Worsley, K.J., Frackowiak, R.S.J., Mazziotta, J.C., and Evans, A.C. (1994).
 Assessing the significance of focal activations using their spatial extent. *B* .
 t_____, 1: 214-220.

- 8. Genovese, C.R., Lazar, N.A., and Nichols, T. (2002). Thresholding of Statistical Maps in Functional Neuroimaging Using the False Discovery Rate. **15:** 772-786.
- 9. Holmes, A.P., Blair, R.C., Watson, J.D.G., and Ford, I. (1996). Nonparametric Analysis of Statistic Images from Functional Mapping Experiments. *r* Cr r B
 z 16: 7-22.
- Locascio, J.J., Jennings, P.J., Moore, C.I. and Corkin, S. (1997). Time series analysis in the time domain and resampling methods for studies of functional magnetic resonance brain imaging. *Brancesconders*, 5: 168-193.
- 11. Petersson, K.M., Nichols, T.E., Poline, J.-B., and Holmes, A.P. (1999). Statistical limitations in functional neuroimaging II. Signal detection and statistical inference. *r S B*_x *B S*_y , **354:1387** 1261-1281.
- 12. Rowe, D.B. (2003). Multivariate Bayesian Statistics, CRC Press, Boca Raton, FL, USA.
- Storey, J.D. (2001a). A New Approach to False Discovery Rates and Multiple Hypothesis Testing, Technical Report No. 2001-18, Department of Statistics, Stanford University.
- 14. Storey, J.D. (2001b). The False Discovery Rate: A Bayesian Interpretation and the *q*-value, Technical Report No. 2001-12, Department of Statistics, Stanford University.
- Storey, J.D. and Tibshirani (2001). Estimating the positive False Discovery Rate Under Dependence, with Applications to DNA Microarrays, Technical Report No. 2001-28, Department of Statistics, Stanford University.
- 16. Worsley, K.J., Evans, A.C., Marrett, S. and Neelin, P. (1992). A three-dimensional statistical analysis for CBF activation studies in human brain. *r Cr r B z*, 12: 900-918.
- 17. Yekutieli, D. and Benjamini, Y. (1999). Resampling-based false discovery rate controlling multiple test procedures for correlated test statistics, *r* S z_z z_ z_ j r , 82, 171-196.