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Abstract.

A common approach to testing for di�erences between the survival rates of two

therapies is to use a proportional hazards regression model which allows for an

adjustment of the two survival functions for any imbalance in prognostic factors in

the comparison. An alternative approach to this problem is to plot the di�erence

between the two predicted survival functions with a con�dence band that provides

information about when these two treatments di�er. Such a band will depend on

the covariate values of a given patient. In this paper we show how to construct a

con�dence band for the di�erence of two survival functions based on the proportional

hazards model. A simulation approach is used to generate the bands. This approach

is used to compare the survival probabilities of chemotherapy and allogeneic bone

marrow transplants for chronic leukemia.

1. Introduction

A common problem encountered in biomedical applications is the comparison of the survival
rates of two treatments. In this comparison one tests whether the two treatments have the
same survival function or equivalently the same hazard function over a given time period.
When there are additional covariates associated with survival then this testing is typically
performed in the framework of a Cox (1972) proportional hazards model.

When the testing results indicate that two survival functions are di�erent, patients and
physicians often want to known \at what times are these two treatments di�erent?". This
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plots and comparing the con�dence bands with the zero line summarizes how the di�erence
betwen the two survival functions change with time. Recently, Parzen et al (1997) used the
Kaplan-Meier (1958) estimators of the two survival functions, F̂1(�) and F̂2(�), to estimate
the di�erence between the survival functions and they proposed a simulation method to
construct



Here, � can be estimated by maximizing the strati�ed Cox partial log likelihood function
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where Nij(u) = IfXij � Tij � u;Dij = 1g, �Ni =
P

iNij, and Yij(u) = IfXij � u � Tijg is
the indicator of whether the jth individual is at risk at time u and is in the ith treatment
group. Note that an individual is at risk only since his or her truncation time, so that the
size of the risk set is initally increasing and then decreases.

To compare two predicted survival curves, we estimate the conditional survival functions
for the two treatments for a patient with a particular set of covariates z0,

Fi(t; z0) = P (T > tjz0; Treatment i) = e��i(t;z0);
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For convenience we introduce the notations
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for i = 1; 2; and k = 0; 1; 2, where for a column vector a, a
0 = 1, a
1 = a, and a
2 = aa0.
For simplicity of presentation, we assume fXij; Tij; Dij; Zijg; (j = 1; � � � ; ni) are indepen-

dent and identically distributed, P (Tij � Xij) > 0, and fZijg is bounded. Left-truncated
and right-censored survival data has been studied extensively. The more general conditions
required to obtain large sample results for this type of data can be found in Woodroofe
(1985), Lai and Ying (1991) and Andersen et al (1993). Andersen et al (1993) argued that
the martingale central limit theory can be applied to the left-truncated data, so that the
asymptotic results based on right censored data can be extended to the left-truncated and
right censored data. Also we assume that two samples are independent. Let n = n1 + n2.
Then, if ni=n �! pi > 0, for i = 1; 2, �̂ is an consistent estimate of �, and

p
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The transplant cohort included 548 patients receiving hydroxyurea or interferon pre-
treatment and a HLA-identical sibling bone marrow transplant (BMT). All patients were
reported to the International Bone Marrow Transplant Registry (IBMTR). IBMTR is a
voluntary working group of over 300 transplant centers worldwide that contribute data on
their allogeneic bone marrow transplants to a Statistical Center at the Medical College of
Wisconsin. Patients in this arm were diagnosed between 1983 and 1991, and were between
15 and 55 years of age. For detailed patient characteristics see Gale et alc3



Figure 1a shows the estimated survival curves for a recently diagnosed (� 1988) older (� 35
years) male patient with large spleen size � 10 cm. Figure 1b shows the estimated di�erence
(BMT-Chemotherapy) between the two survival curves with a 95% pointwise con�dence
interval and 95% con�dence band for such a patient. A similar plot for a patient diagnosed
prior to 1988 with the same characteristics is given in Figure 2.

These con�dence band plots indicated that the chemotherapy treatment has an early
survival advantage due, perhaps, to the toxicity of the bone marrow transplant. There is a
signi�cant late survival advantage for transplant patient due to a lower relapse rate. Also
for the recently treated cases (Figure 1) BMT had a survival advantage (95% con�dence
band is > 0) starting at 5.50 years after diagnosis. This is in contrast to patients treated
prior to 1988 (Figure 2) where BMT started to show an advantage only after 8.29 years since
diagnosis. This may be due to the improvement of bone marrow transplant techniques over
the years.

In this example, there are 16 sets of possible covariates values. The time points since
diagnosis where BMT starts to have a survival advantage are presented in Table 2. These
time points ranged from 5.50 years to 8.29 years since diagnosis depending on the given
patient characteristics. By contrast to the comparison of two Kaplan-Meier survival curves,
this comparison of two predicted survival curves based on the Cox model provides more
information to both the physicians and patients.

Table 2. Time points t0 since diagnosis (DX) in years where BMT starts to have survival
advantage.

Covariate Values
Sex Spleen Size Age Year of DX C� t0
M < 10 cm < 35 < 88 2.96 7.84
M < 10 cm < 35 � 88 2.97 5.97
M � 10 cm < 35 < 88 2.96 7.84
M � 10 cm < 35 � 88 2.99 5.88
M < 10 cm � 35 < 88 2.99 7.84
M < 10 cm � 35 � 88 2.95 5.88
M � 10 cm � 35 < 88 2.96 8.29
M � 10 cm � 35 � 88 2.94 5.50
F < 10 cm < 35 < 88 2.96 8.29
F < 10 cm < 35 � 88 2.93 5.97
F � 10 cm < 35 < 88 2.99 7.84
F � 10 cm < 35 � 88 2.98 6.24
F < 10 cm � 35 < 88 2.92 7.84
F < 10 cm � 35 � 88 2.89 5.97
F � 10 cm � 35 < 88 2.90 7.84
F � 10 cm � 35 � 88 2.92 5.88
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4. Remarks

Plotting the con�dence band for the di�erence of two predicted survival functions provides a
valuable decision making tool for physicians and patients. The proposed simulation method
is easy to program, and o�ers a exible way to construct such con�dence bands, particularly
when the limiting distributions cannot be evaluated analytically. The proposed simulation
method can be extended to compare the di�erence of two survival curves based on other
models, such as Aalen's (1989) additive model or other more general models.

The estimated critical value, C�, depends on the number of realizationsN . It is important
to know what is the appropriate N . In our example for an early diagnosed young (< 35 yr)
male patient with small spleen size (< 10 cm), the estimated C 0

�s were 3.01, 2.98, 2.97, 3.01,
2.97, and 3:01 for N = 500; 1500; 3000; 5000; 8000 and 10000, respectively. It appears that
the estimate of C� is resonably stable after only 500 replications.
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