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Comparing Reference Charts for Cross-Sectional

and Longitudinal Data

Abstract

Reference charts are valuable tools for clinicians in their daily work on pediatric
clinics. Reference charts are often constructed by smoothing techniques, and in this
paper we present a newly dev



1 Introduction

A reference chart is a graph showing the distribution of some measurement of interest and
age. This is usually done by displaying the median and various percentiles over the range
of ages. When the measurements are approximately normally distributed, perhaps after
an appropriate transformation, the median is equivalent to the mean and this is usually
used for estimation purposes. Further, when measurements are approximately normal the
percentiles can all be expressed as a simple function of the mean and the standard deviation.
Therefore it often su�ces to estimate a mean function that relates the expected value of the
measurement to age, and the variance function that relates the variation of measurements to
age. The mean curve and the variance function may be estimated when some assumptions
are made, usually one assumes that they are smooth curves, and then uses a smoothing
technique to estimate the curves. Quite often smoothness is a reasonable assumption that
can be justi�ed based on biological reasoning. Even with smoothness, however, many
di�culties are still present, and these are not the issue of this paper. Cole & Green1

reviews methodological issues of construction for reference charts.
It is important to distinguish between reference charts used for cross-sectional purposes,

i.e., deciding whether or not a given measurement at a given age is normal compared to the
distribution in a comparable population, or longitudinal purposes, i.e., deciding whether
or not the growth of a child is normal based on repeated measurements. When evaluating
the development of the measurement of interest the techniques used should re
ect the
longitudinal aspect. The typical clinical situation is the following: a child returns for
measurements at the pediatric clinic, or shows up with a record of earlier measurements,
now, based on the currentbas TD
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2 A Log-Rank Test for Comparing Regression Functions

In this section we present a longitudinal regression model, for independent identically dis-
tributed subjects, that models the current measurement given the time it was measured,
the previous measurements and the times of these, see Scheike4 or Scheike & Zhang3 for
further details. This is expressed through the conditional regression model

Yi;j = m(V i
�i;j ) + �i;j; for j = 1; :::; Ni; i = 1; :::; n: (1)

Think of Yi;j as the jth measurement of the ith subject at time �i;j. We assume that
m(�) is a smooth function and that V i

s is an observable process that only depends on past
observations. Note that the regressionatij
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where a is introduced to avoid edge e�ects of the kernel estimators. Using local-linear
smoothers, or smoothers without edge-problems, this issue can be ignored for applications.

Scheike & Zhang3 studied the asymptotic distribution of T (z) and showed that if
nj=(n1 + n2)!pj, for j = 1; 2, and under su�cient smoothness and other weak regular-
ity conditions, it follows that

p
n1 + n2T (z) converge towards a Gaussian martingale with

mean zero (under the hypothesis) and variance function

H(y) = p�11

Z z

a

�21(y)

�1(y)
+ p�12

Z z

a

�22(y)

�2(y)
;

that can be estimated consistently by

dH(y) = (
n1

n1 + n2
)�1
Z z

a

d�21(y)d�1(y)
dy + (

n2
n1 + n2

)�1
Z z

a

d�22(y)d�2(y)
dy

One consequence of the Proposition is that

p
n1 + n2T (z) � N(0;H(y));

i.e., T (z) is approximately normally distributed with a variance we can estimate.
We now de�ne the log-rank (two-sample) test-statistic of the hypothesis Ho : m1(�) =

m2(�) on the interval [a; S � a] as

LR =
p
n1 + n2T (S � a)=

q bH(S � a)

where S is the upper limit of comparison. The two sample log-rank test, LR, have an
asymptotically standard normal distribution under the the null hypothesis ofm1(z) = m2(z)
on [a; S � a]. The test-statistic works best if m1(�) � m2(�) or m2(�) � m1(�).

If this is not the case one may instead consider the maximal deviation test-statistic

M
def

= sup
z2[a;S�a]

jT (z)j: (4)

To work out the log-rank test-statistic we thus need to have estimates of mk(�), �2k(�)
and �k(�), and we therefore propose that these are given when reference charts are pre-
sented. The next two section consider the implementation of the log-rank test-statistic in
two practical situations. Section 3 contains and application to cross-sectional data, and
Section 4 discusses a longitudinal situation.

3 Comparing Cross-Sectional Growth Data

The average height in the population has been increasing with time - the so called "sec-
ular trend". Consequently, construction of reference charts for height must be renewed
regularly. The secular change in mean height in a population is the result of a general
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It appears that patients with hypochondroplasia grow faster than patients with achon-
droplasia, and if we apply our regression log-rank test to the the 2-dimensional regression
model with the following region of previous height and time since previous measurement :
[50; 120] � [0:2; 1:9] our test statistic can be calculated for a choice of the two dimensional
band-widths. Figure 2 shows the di�erence in the cumulative regression functions (T (z))
for b1 = 5:0 and b2 = 0:2. For this choice of bandwidths we get a test-statistic evaluated
in the endpoint (T (120; 1:9)) on 94:1 with variance 586, and this results in a LR = 3:9
test-statistic which is approximately standard normal thus resulting in a p-value of approx-
imately 0:0001. Further smoothing of the regression functions results in the same conclusion
although the test-statistic decreases some. Note that one would expect the test-statistic to
have good power in this application since the Hypo diagnosis appears to result in a con-
sistently better growth than the Acho diagnosis. A similar comparison of the increase

ere
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and the methodology is therefore limited to low dimensions. In an example we compared
the longitudinal growth for two di�erent diagnosis of skeletal dysplasia where an ideal 3-
dimensional regression function was reduced to a 2-dimensional regression function that
provided an adequate description of the data.

6 Appendix: Formulas for estimators

In this appendix we provide formulas for estimators of the quantities that are used in the
log-rank test statistic.

We provide a Nadaraya-Watson (ND) type estimator of the regression functions and the
variance function as well as an estimator of �(y).

Let K(�) be a kernel function with support on [�1; 1], R K(u)du = 1 and
R
uK(u)du = 0,

and let b = (b1; :::; bd) be a d-dimensional bandwidth, jbj = b1 � ::: � bd, b 2]0;1[d. De�ne

further CK
def

=
R
K2(u)du , dK

def

=
R
u2K(u)du and eK

def

=
R
uK(u)du. We assume that

eK is 0 to obtain an asymptotically unbiased result for our estimator. We abuse notation by
letting K denote a d-dimensional kernel as well as a one dimensional through the product
kernel, i.e., K(y; b)

def

= K(y1
b1
; :::; yd

bd
)

def

=
Qd

i=1K(yi
bi
).

Now, the ND estimator Tf
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Figure 1. Estimated mean (thin line) and data points from Copenhagen boys 1988-1992
(dots), and estimated mean and 95 % reference area for Danish standard reference from
1971 (thick lines).

Table 1. Estimate of density multiplied by sample size, estimate of mean, estimate of
variance, and log-rank test for di�erence between mean curves of Copenhagen boys and
Danish standard reference.

Figure 2. Normalised di�erence in cumulative regression functions for Hypo-Acho for
bandwidth (5,0.2). The log-rank test results in p-value at 0.0001.
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