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SUMMARY

In survival analysis, deviations from proportional hazards may sometimes

by explained by unaccounted random heterogeneity, or frailty. This note

recalls the literature on omitted covariates in survival analysis and shows

in a case study how unstably frailty models might behave when asked to

account for unobserved heterogeneity in standard survival analysis with no

replications per heterogeneity unit. Accelerated failure time modelling seems

to avoid these di�culties and also to yield easily interpretable results.

We propose that it would be advantageous to upgrade the accelerated

failure time approach alongside the hazard modelling approach to survival

analysis.
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1. INTRODUCTION

Statistical modelling of heterogeneity may be based on strati�cation accord-

ing to factors, regression on covariates, or by assuming a probability distri-

bution of







parameters, maximum lik



Let W have a standard extreme value distribution of a minimum, that is,

the density of W is exp(w � ew);�1 < w <1. Then T

follows the above Weibull distribution, where

Y = logT = �
log �

�
�
�1
�
x1 �

�2
�
x2 +

W

�
:

This is an accelerated failure time model: an ordinary regression problem

of log(survival time) on x1 and x2 with extreme value distributed residuals

with scale parameter ��1, regression coe�cients ��1=� and ��2=� and inter-

cept ���1 log �. Borrowing experience from normal-theory linear regression

(i.e. assuming W standard normal (0,1)), it is seen that the regression co-

e�cients and intercept are estimated by the usual regression estimates, in

particular E( d�1=�) = �1=�, �
�1 is estimated by the usual residual empirical

variance s2, and for large samw27 TD0 TD
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As above, �� is estimated by the usual regression estimate, so E d(��) =
�� = �1=� (= the theoretical regression of Y on x1). Therefore �̂

P
! � =

�1�
�1=2=� , which is closer to 0 than �1: there is the well-known attenuation

due to an omitted covariate. Furthermore

as. var.(�̂) =
1

n
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bution has changed, now being that of (W + U)=�. Again borrowing expe-

rience from normal-theory linear regression, ��1=� would be estimated by

the usual regression estimate, E( d�1=�) = �1=�, but if we had erroneously

assumed no frailty (U = 0); ��1 would have been overestimated by the fac-

tor � = (VarW + VarU)=VarW and the hazard model regression parameter

�1 = (�1=�)=�
�1 similarly underestimated by the factor �1, leading to atten-

uation by disregarding frailty.

Conclusion. For the Weibull model the accelerated failure time parametriza-

tion conveniently separates regression coe�cients from dispersion param-

eters, allowing unchanged estimation of regression coe�cients under the

frailty-amended model, which only contributes to the dispersion. This was

previously pointed out by Hougaard et al.16.

5. EXAMPLE

Andersen et al.2 considered in their Examples VII.3.1, VII.3.4 and IX.4.3

survival after operation for malignant melanoma for 205 patien



similar ways of incorporating these covariates. If the covariates are included

in a standard Cox model the estimated regression coe�cients and standard

errors were

log(tumour thickness) 0.610 (0.176)

ulceration 0.971 (0.321)

but graphical checks (Andersen et al.2, Figs. VII.3.3 and VII.3.6) raised

some suspicion that hazards for patients without and with ulceration, were

not proportional but rather converging. Therefore a time-dependent covari-

ate to account for possible time � covariate interaction was added:

log(tumour thickness) 0.607 (0.177)

ulceration 1.082 (0.357)

ulceration �(log(t)� 7) -1.198 (0.589);

here t is measured in days and 7 � log(3� 365). A likelihood ratio test of no

e�ect of the latter variable yielded P = :02, giving some evidence to support

the suspected deviation from proportionality.

Semiparametric frailty model.

Because this deviation might be interpreted as a selection e�ect in a

heterogeneous population arising from important unmeasured confounders

not being included in the analysis, a frailty model was postulated. To the
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Cox regression model speci�cation of the death intensity with the two co-

variates was multiplied a frailty factor Z, assumed gamma distributed with

E(Z) = 1;Var(Z) = �. The �tted parameters were (with the no-frailty model

estimates attached for comparison)

Frailty No frailty

log(tumour thickness) 1.370 (0.472) 0.610 (0.176)

ulceration 1.696 (0.686) 0.971 (0.321)

frailty variance 4.215 (2.266) 0 (-)

with likelihood ratio test statistic of no frailty variance yielding P = :007.

For details on estimating the standard errors under the frailty model, cf.

Andersen et al.27.

It is thus seen that incorporation of unmeasured population heterogeneity

in this case deattenuates the e�ects of the measured covariates (as well as of

their standard errors) by a factor of about 2.

Weibull frailty model.

Andersen et al.2 noted that the underlying intensities of the �tted Cox

regression models varied so regularly that a hypothesis of Weibull underlying

intensity should be acceptable. In order to study the etb e r e 5 8 s e n y



vey by Klein et al.4, as well as the power variance family P (�;  ; �) due to

Hougaard32, of which all of these are special cases. Hougaard's model is most

easily characterized by the Laplace transform

exp

(
�
 

�
[(� + s)� � ��]

)
:

Our gamma distribution is P (0; ��1; ��1), while P (�;  ; 0)(0 < � < 1)

are the positive stable distributions and P (1
2
;  ; �) the inverse Gaussian dis-

tributions. As is well known, the positive stable frailty distribution leads

to unidenti�ability in the present case of observing only one event per indi-

vidual. For the other frailty models, with the no frailty model included for

comparison, the estimates are given in Table 1.

It is seen that the results from the all-inclusive power variance frailty

model are virtually indistinguishable from that of the gamma frailty model,

which in turn �ts signi�cantly better than the inverse Gaussian frailty and the

no frailty/positive stable frailty (the latter two having the same likelihood).

Also, the estimates for no frailty and gamma frailty are well compatible with

the semiparametric estimates quoted above, and also there is a deattenuation

factor of 2 to 3 on the regression parameter when considering the gamma

frailty model. The assumption of inverse Gaussian frailty yields intermediate

results, and judging from the likelihood also a less e�ective accounting for

the heterogeneity.

Table 2 records the estimated correlations between the estimated frailty

parameter (indicating the spread of the frailty distribution) and the estimates

of the regression coe�cients and the Weibull shape parameter. The positive

12



correlation re
ects the inherent negative correlation between two alternative

ways of describing the observed heterogeneity in survival times: either by a

large frailty parameter (wide frailty distribution), or by a \
at" underlying

intensity (small Weibull shape parameter). Indeed, while the underlying

Weibull distribution in the no-frailty model is insigni�cantly di�erent from

an exponential distribution (shape parameter=1), a much more concentrated

underlying distribution is estimated for the gamma and inverse Gaussian

frailty models.

The positive correlations between estimated frailty parameter and es-

timated regression parameters re
ect the deattenuation e�ect described in

Section 3. Intuitively: The interindividual variation is either described by

covariates (high regression coe�cients) or frailty (large frailty parameter).

Accelerated failure time interpretation.

Alternatively, we may start from the accelerated failure time (AFT) inter-

pretation outlined towards the end of Section 3. We then obtain the results

of Table 3, accounting for the multiplicative indeterminacy in the positive

stable frailty distribution and still assuming underlying Weibull distribution.

It is seen that in the AFT interpretation, the various models agree. Let



log(survival time) = const. { 0.60 � log tumour thickness

{ 0.75 � ulceration

+ noise .

That is, for �xed value of ulceration, if tumour thickness increases by a factor

�, survival time will decrease by a factor �0:60. Similarly, for �xed value of

tumour thickness, ulceration of the tumour will decrease life by a factor of

e�0:75 � 0:47 compared to what it would have been if the tumour was not

ulcerated.

6. DISCUSSION

Frailty interpretation: individual or population risk. The original impetus

for the frailty concept such as de�ned by Vaupel et al.1 was to clarify the

behaviour of the mean hazard among the survivors in a heterogeneous pop-

ulation. In our example we observed a (slight) deviation from8 0 TD
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the only slightly worse �tting inverse Gaussian frailty distribution deattenu-

ation was halved, and for the positive stable frailty model it (the parameter

� above) is inherently unidenti�able. (Motivated in part by this feature of

the positive stable frailty distribution, Robins and Greenland14;15 discussed

consequences of such unidenti�ability problems for compensation schemes).

It is well known that ratios of regression coe�cients are much less sensi-

tive to model misspeci�cation than the regression coe�cients themselves,

see Solomon19 for examples from the present context and Li and Duan31 for

a careful general discussion with review of earlier work. This is also very

apparent in our example.

A conceptual explanation may be obtained from the observation above

about strong positive correlation between the estimates of the Weibull shape

parameter � and the spread of the frailty distribution. The single-spell

data contain only limited power as to distinguishing the random variation

as within-individual (large �) or between-individual (large frailty spread),

and therefore interpretations based only on the within-individual hazard are

unstable.

Accelerated failure time interpretation: As seen above the AFT interpre-

tation (which was here feasible starting from log-Weibull error distribution)

avoids the unidenti�ability problem by shifting attention of the dependence

on covariates from the elusive concept of 'individual hazard' to the accelera-

tion factor of the life time itself, thereby combining the within- and between-

individual components of variation into much more stably determined func-

tionals. The heterogeneity is conveniently relegated to an overdispersion

15
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Table 1. Estimates for Weibull frailt



Table 2. Weibull frailty models. Correlations between estimated frailty pa-

rameter and parameter estimates as speci�ed.

Gamma frailty Gamma frailty Inverse Gaussian frailty

semiparametric Weibull Weibull

Weibull shape parameter | .882 .793

log(tumour thickness) .632 .598 .323

ulceration .532 .511 .430
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Table 3. Weibull frailty models. Hazard rate regression coe�cients con-

trasted to accelerated failure time regression coe�cients.

Gamma Inverse Gaussian No frailty

frailty frailty (� assumed=1)

or Positive stable frailty

(� indeterminate)

Weibull shape parameter 2.917 (0.718) 1.747 (0.299) 1:150 � � (0:131 � �)

log(tumour thickness) 1.754 (0.592) 0.932 (0.281) 0:577 � � (0:175 � �)

ulceration 2.180 (0.875) 1.512 (0.518) 1:020 � � (0:322 � �)

log(tumour thickness)
Weibull shape parameter 0.60 (0.15) 0.53 (0.18) 0.50 (0.16)

ulceration
Weibull shape parameter 0.75 (0.25) 0.87 (0.28) 0.89 (0.29)
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